Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Implementing algorithms and fitting models when sites (possibly remote) share computation summaries rather than actual data over HTTP with a master R process (using opencpu', for example). A stratified Cox model and a singular value decomposition are provided. The former makes direct use of code from the R survival package. (That is, the underlying Cox model code is derived from that in the R survival package.) Sites may provide data via several means: CSV files, Redcap API, etc. An extensible design allows for new methods to be added in the future and includes facilities for local prototyping and testing. Web applications are provided (via shiny') for the implemented methods to help in designing and deploying the computations.
Access diverse ggplot2'-compatible color palettes for simplified data visualization.
Distributed Online Mean Tests is a powerful tool designed to efficiently process and analyze distributed datasets. It enables users to perform mean tests in an online, distributed manner, making it highly suitable for large-scale data analysis. By leveraging advanced computational techniques, Domean ensures robust and scalable solutions for statistical analysis, particularly in scenarios where data is dispersed across multiple nodes or sources. This package is ideal for researchers and practitioners working with high-dimensional data, providing a flexible and efficient framework for mean testing. The philosophy of Domean is described in Guo G.(2025) <doi:10.1016/j.physa.2024.130308>.
Demonstration code showing how (univariate) kernel density estimates are computed, at least conceptually, and allowing users to experiment with different kernels, should they so wish. The method used follows directly the definition, but gains efficiency by replacing the observations by frequencies in a very fine grid covering the sample range. A canonical reference is B. W. Silverman, (1998) <doi: 10.1201/9781315140919>. NOTE: the density function in the stats package uses a more sophisticated method based on the fast Fourier transform and that function should be used if computational efficiency is a prime consideration.
This package provides a collection of asymmetrical kernels belong to lifetime distributions for kernel density estimation is presented. Mean Squared Errors (MSE) are calculated for estimated curves. For this purpose, R functions allow the distribution to be Gamma, Exponential or Weibull. For details see Chen (2000a,b), Jin and Kawczak (2003) and Salha et al. (2014) <doi:10.12988/pms.2014.4616>.
This package provides a set of tools for relational and event analysis, including two- and one-mode network brokerage and structural measures, and helper functions optimized for relational event analysis with large datasets, including creating relational risk sets, computing network statistics, estimating relational event models, and simulating relational event sequences. For more information on relational event models, see Butts (2008) <doi:10.1111/j.1467-9531.2008.00203.x>, Lerner and Lomi (2020) <doi:10.1017/nws.2019.57>, Bianchi et al. (2024) <doi:10.1146/annurev-statistics-040722-060248>, and Butts et al. (2023) <doi:10.1017/nws.2023.9>. In terms of the structural measures in this package, see Leal (2025) <doi:10.1177/00491241251322517>, Burchard and Cornwell (2018) <doi:10.1016/j.socnet.2018.04.001>, and Fujimoto et al. (2018) <doi:10.1017/nws.2018.11>. This package was developed with support from the National Science Foundationâ s (NSF) Human Networks and Data Science Program (HNDS) under award number 2241536 (PI: Diego F. Leal). Any opinions, findings, and conclusions, or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the NSF.
Extracts colonisation and branching times of island species to be used for analysis in the R package DAISIE'. It uses phylogenetic and endemicity data to extract the separate island colonists and store them.
Inference functionalities for distributed-lag linear structural equation models (DLSEMs). DLSEMs are Markovian structural causal models where each factor of the joint probability distribution is a distributed-lag linear regression with constrained lag shapes (Magrini, 2018 <doi:10.2478/bile-2018-0012>; Magrini et al., 2019 <doi:10.1007/s11135-019-00855-z>). DLSEMs account for temporal delays in the dependence relationships among the variables through a single parameter per covariate, thus allowing to perform dynamic causal inference in a feasible fashion. Endpoint-constrained quadratic, quadratic decreasing, linearly decreasing and gamma lag shapes are available.
Discriminant Adaptive Nearest Neighbor Classification is a variation of k nearest neighbors where the shape of the neighborhood is data driven. This package implements dann and sub_dann from Hastie (1996) <https://web.stanford.edu/~hastie/Papers/dann_IEEE.pdf>.
Statistical tests and test statistics to identify events in a dataset that are dragon kings (DKs). The statistical methods in this package were reviewed in Wheatley & Sornette (2015) <doi:10.2139/ssrn.2645709>.
Basic routines used in scientific coding, such as timing routines, vector/array handing functions and I/O support routines.
This package provides a set of functions for inferring, visualizing, and analyzing B cell phylogenetic trees. Provides methods to 1) reconstruct unmutated ancestral sequences, 2) build B cell phylogenetic trees using multiple methods, 3) visualize trees with metadata at the tips, 4) reconstruct intermediate sequences, 5) detect biased ancestor-descendant relationships among metadata types Workflow examples available at documentation site (see URL). Citations: Hoehn et al (2022) <doi:10.1371/journal.pcbi.1009885>, Hoehn et al (2021) <doi:10.1101/2021.01.06.425648>.
This package provides functions for (1) ranking, selecting, and prioritising genes, proteins, and metabolites from high dimensional biology experiments, (2) multivariate hit calling in high content screens, and (3) combining data from diverse sources.
This package provides the dose transition pathways (DTP) to project in advance the doses recommended by a model-based design for subsequent patients (stay, escalate, deescalate or stop early) using all the accumulated toxicity information; See Yap et al (2017) <doi: 10.1158/1078-0432.CCR-17-0582>. DTP can be used as a design and an operational tool and can be displayed as a table or flow diagram. The dtpcrm package also provides the modified continual reassessment method (CRM) and time-to-event CRM (TITE-CRM) with added practical considerations to allow stopping early when there is sufficient evidence that the lowest dose is too toxic and/or there is a sufficient number of patients dosed at the maximum tolerated dose.
This package creates a data dictionary from any dataframe or tibble in your R environment. You can opt to add variable labels. You can write the object directly to Excel.
This package provides a function toolkit to facilitate reproducible RNA-Seq Differential Gene Expression (DGE) analysis (Law (2015) <doi:10.12688/f1000research.9005.3>). The tools include both analysis work-flow and utility functions: mapping/unit conversion, count normalization, accounting for unknown covariates, and more. This is a complement/cohort to the DGEobj package that provides a flexible container to manage and annotate Differential Gene Expression analysis results.
This package provides a modular package for measuring disparity (multidimensional space occupancy). Disparity can be calculated from any matrix defining a multidimensional space. The package provides a set of implemented metrics to measure properties of the space and allows users to provide and test their own metrics. The package also provides functions for looking at disparity in a serial way (e.g. disparity through time) or per groups as well as visualising the results. Finally, this package provides several statistical tests for disparity analysis.
Fits, bootstraps, and evaluates two-component normal and lognormal mixture models. Includes diagnostic plots and statistical evaluation of mixture model fits using differential evolution optimization.
Demonstrate the results of a statistical model object as a dynamic nomogram in an RStudio panel or web browser. The package provides two generics functions: DynNom, which display statistical model objects as a dynamic nomogram; DNbuilder, which builds required scripts to publish a dynamic nomogram on a web server such as the <https://www.shinyapps.io/>. Current version of DynNom supports stats::lm, stats::glm, survival::coxph, rms::ols, rms::Glm, rms::lrm, rms::cph, and mgcv::gam model objects.
Computing and plotting the distance covariance and correlation function of a univariate or a multivariate time series. Both versions of biased and unbiased estimators of distance covariance and correlation are provided. Test statistics for testing pairwise independence are also implemented. Some data sets are also included. References include: a) Edelmann Dominic, Fokianos Konstantinos and Pitsillou Maria (2019). An Updated Literature Review of Distance Correlation and Its Applications to Time Series'. International Statistical Review, 87(2): 237--262. <doi:10.1111/insr.12294>. b) Fokianos Konstantinos and Pitsillou Maria (2018). Testing independence for multivariate time series via the auto-distance correlation matrix'. Biometrika, 105(2): 337--352. <doi:10.1093/biomet/asx082>. c) Fokianos Konstantinos and Pitsillou Maria (2017). Consistent testing for pairwise dependence in time series'. Technometrics, 59(2): 262--270. <doi:10.1080/00401706.2016.1156024>. d) Pitsillou Maria and Fokianos Konstantinos (2016). dCovTS: Distance Covariance/Correlation for Time Series'. R Journal, 8(2):324-340. <doi:10.32614/RJ-2016-049>.
Statistical methods and related graphical representations for the Desirability of Outcome Ranking (DOOR) methodology. The DOOR is a paradigm for the design, analysis, interpretation of clinical trials and other research studies based on the patient centric benefit risk evaluation. The package provides functions for generating summary statistics from individual level/summary level datasets, conduct DOOR probability-based inference, and visualization of the results. For more details of DOOR methodology, see Hamasaki and Evans (2025) <doi:10.1201/9781003390855>. For more explanation of the statistical methods and the graphics, see the technical document and user manual of the DOOR Shiny apps at <https://methods.bsc.gwu.edu>.
Diversification is one of the most important concepts in portfolio management. This framework offers scholars, practitioners and policymakers a useful toolbox to measure diversification. Specifically, this framework provides recent diversification measures from the recent literature. These diversification measures are based on the works of Rudin and Morgan (2006) <doi:10.3905/jpm.2006.611807>, Choueifaty and Coignard (2008) <doi:10.3905/JPM.2008.35.1.40>, Vermorken et al. (2012) <doi:10.3905/jpm.2012.39.1.067>, Flores et al. (2017) <doi:10.3905/jpm.2017.43.4.112>, Calvet et al. (2007) <doi:10.1086/524204>, and Candelon, Fuerst and Hasse (2020).
Modifies dot plots to have different sizes of dots mimicking violin plots and identifies modes or peaks for them based on frequency and kernel density estimates (Rosenblatt, 1956) <doi:10.1214/aoms/1177728190> (Parzen, 1962) <doi:10.1214/aoms/1177704472>.
Finds regular and chaotic intervals in the data using the 0-1 test for chaos proposed by Gottwald and Melbourne (2004) <DOI:10.1137/080718851>.