Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides tools for working with multiple related tables, stored as data frames or in a relational database. Multiple tables (data and metadata) are stored in a compound object, which can then be manipulated with a pipe-friendly syntax.
This package creates testthat tests from roxygen examples using simple tags.
An easy-to-use yet powerful system for plotting grouped data effect sizes. Various types of effect size can be estimated, then plotted together with a representation of the original data. Select from many possible data representations (box plots, violin plots, raw data points etc.), and combine as desired. Durga plots are implemented in base R, so are compatible with base R methods for combining plots, such as layout()'. See Khan & McLean (2023) <doi:10.1101/2023.02.06.526960>.
Estimates the Dyad Ratios Algorithm for pooling and smoothing poll estimates. The Dyad Ratios Algorithm smooths both forward and backward in time over polling results allowing differences in both question type and polling house. The result is an estimate of a single latent variable that describes the systematic trend over time in the (noisy) polling results. See James A. Stimson (2018) <doi:10.1177/0759106318761614> and the package's vignette for more details.
This package provides methods to estimate dynamic treatment regimes using Interactive Q-Learning, Q-Learning, weighted learning, and value-search methods based on Augmented Inverse Probability Weighted Estimators and Inverse Probability Weighted Estimators. Dynamic Treatment Regimes: Statistical Methods for Precision Medicine, Tsiatis, A. A., Davidian, M. D., Holloway, S. T., and Laber, E. B., Chapman & Hall/CRC Press, 2020, ISBN:978-1-4987-6977-8.
Scripting of structural equation models via lavaan for Dyadic Data Analysis, and helper functions for supplemental calculations, tabling, and model visualization. Current models supported include Dyadic Confirmatory Factor Analysis, the Actorâ Partner Interdependence Model (observed and latent), the Common Fate Model (observed and latent), Mutual Influence Model (latent), and the Bifactor Dyadic Model (latent).
While autoregressive distributed lag (ARDL) models allow for extremely flexible dynamics, interpreting substantive significance of complex lag structures remains difficult. This package is designed to assist users in dynamically simulating and plotting the results of various ARDL models. It also contains post-estimation diagnostics, including a test for cointegration when estimating the error-correction variant of the autoregressive distributed lag model (Pesaran, Shin, and Smith 2001 <doi:10.1002/jae.616>).
This package provides functions for fitting a Bayesian model for grouping binary dissimilarity matrices in homogeneous clusters. Currently, it includes methods only for binary data (<doi:10.18637/jss.v100.i16>).
Different sample size calculations with different study designs. These techniques are explained by Chow (2007) <doi:10.1201/9781584889830>.
Easy visualization for datasets with more than two categorical variables and additional continuous variables. The package is particularly useful for exploring complex categorical data in the context of pathway analysis across multiple conditions. This package is now in maintenance-only mode and kept for legacy compatibility; for new projects and active development, please use the successor package ggdiceplot (see <https://github.com/maflot/ggdiceplot> and <https://dice-and-domino-plot.readthedocs.io/en/latest/>).
This package provides functions to facilitate access to the DKAN API (<https://dkan.readthedocs.io/en/latest/apis/index.html>), including the DKAN REST API (metadata), and the DKAN datastore API (data). Includes functions to list, create, retrieve, update, and delete datasets and resources nodes. It also includes functions to search and retrieve data from the DKAN datastore.
This package provides a revision to the stats::ks.test() function and the associated ks.test.Rd help page. With one minor exception, it does not change the existing behavior of ks.test(), and it adds features necessary for doing one-sample tests with hypothesized discrete distributions. The package also contains cvm.test(), for doing one-sample Cramer-von Mises goodness-of-fit tests.
Estimation of the average treatment effect when controlling for high-dimensional confounders using debiased inverse propensity score weighting (DIPW). DIPW relies on the propensity score following a sparse logistic regression model, but the regression curves are not required to be estimable. Despite this, our package also allows the users to estimate the regression curves and take the estimated curves as input to our methods. Details of the methodology can be found in Yuhao Wang and Rajen D. Shah (2020) "Debiased Inverse Propensity Score Weighting for Estimation of Average Treatment Effects with High-Dimensional Confounders" <arXiv:2011.08661>. The package relies on the optimisation software MOSEK <https://www.mosek.com/> which must be installed separately; see the documentation for Rmosek'.
Data and miscellanea to support the book "Introduction to Data analysis with R for Forensic Scientists." This book was written by James Curran and published by CRC Press in 2010 (ISBN: 978-1-4200-8826-7).
Dual Wavelet based Nonlinear Autoregressive Distributed Lag model has been developed for noisy time series analysis. This package is designed to capture both short-run and long-run relationships in time series data, while incorporating wavelet transformations. The methodology combines the NARDL model with wavelet decomposition to better capture the nonlinear dynamics of the series and exogenous variables. The package is useful for analyzing economic and financial time series data that exhibit both long-term trends and short-term fluctuations. This package has been developed using algorithm of Jammazi et al. <doi:10.1016/j.intfin.2014.11.011>.
Este pacote traduz os seguintes conjuntos de dados: airlines', airports', ames_raw', AwardsManagers', babynames', Batting', diamonds', faithful', fueleconomy', Fielding', flights', gapminder', gss_cat', iris', Managers', mpg', mtcars', atmos', penguins', People, Pitching', pixarfilms','planes', presidential', table1', table2', table3', table4a', table4b', table5', vehicles', weather', who'. English: It provides a Portuguese translated version of the datasets listed above.
An implementation by Chen, Li, and Zhang (2022) <doi: 10.1093/bioadv/vbac041> of the Depth Importance in Precision Medicine (DIPM) method in Chen and Zhang (2022) <doi:10.1093/biostatistics/kxaa021> and Chen and Zhang (2020) <doi:10.1007/978-3-030-46161-4_16>. The DIPM method is a classification tree that searches for subgroups with especially poor or strong performance in a given treatment group.
Analyses gene expression data derived from experiments to detect differentially expressed genes by employing the concept of majority voting with five different statistical models. It includes functions for differential expression analysis, significance testing, etc. It simplifies the process of uncovering meaningful patterns and trends within gene expression data, aiding researchers in downstream analysis. Boyer, R.S., Moore, J.S. (1991) <doi:10.1007/978-94-011-3488-0_5>.
DataSHIELD is an infrastructure and series of R packages that enables the remote and non-disclosive analysis of sensitive research data. This package defines the API that is to be implemented by DataSHIELD compliant data repositories.
The Discrete Transmuted Generalized Inverse Weibull (DTGIW) distribution is a new distribution for count data analysis. The DTGIW is discrete distribution based on Atchanut and Sirinapa (2021). <DOI: 10.14456/sjst-psu.2021.149>.
Generate descriptive statistics such as measures of location, dispersion, frequency tables, cross tables, group summaries and multiple one/two way tables.
Phase I/II adaptive dose-finding design for combination studies where toxicity rates are supposed to increase with both agents.
We offer an implementation of the series representation put forth in "A series representation for multidimensional Rayleigh distributions" by Wiegand and Nadarajah <DOI: 10.1002/dac.3510>. Furthermore we have implemented an integration approach proposed by Beaulieu et al. for 3 and 4-dimensional Rayleigh densities (Beaulieu, Zhang, "New simplest exact forms for the 3D and 4D multivariate Rayleigh PDFs with applications to antenna array geometrics", <DOI: 10.1109/TCOMM.2017.2709307>).
This package provides functionality that assists in tabular description and statistical comparison of data.