Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Utilities for mixed frequency data. In particular, use to aggregate and normalize tabular mixed frequency data, index dates to end of period, and seasonally adjust tabular data.
Tests whether multivariate ordinal data may stem from discretizing a multivariate normal distribution. The test is described by Foldnes and Grønneberg (2019) <doi:10.1080/10705511.2019.1673168>. In addition, an adjusted polychoric correlation estimator is provided that takes marginal knowledge into account, as described by Grønneberg and Foldnes (2022) <doi:10.1037/met0000495>.
The goal of dataspice is to make it easier for researchers to create basic, lightweight, and concise metadata files for their datasets. These basic files can then be used to make useful information available during analysis, create a helpful dataset "README" webpage, and produce more complex metadata formats to aid dataset discovery. Metadata fields are based on the Schema.org and Ecological Metadata Language standards.
Pulls together a collection of datasets from Miguel de Carvalho research articles. Including, for example: - de Carvalho (2012) <doi:10.1016/j.jspi.2011.08.016>; - de Carvalho et al (2012) <doi:10.1080/03610926.2012.709905>; - de Carvalho et al (2012) <doi:10.1016/j.econlet.2011.09.007>); - de Carvalho and Davison (2014) <doi:10.1080/01621459.2013.872651>; - de Carvalho and Rua (2017) <doi:10.1016/j.ijforecast.2015.09.004>; - de Carvalho et al (2023) <doi:10.1002/sta4.560>; - de Carvalho et al (2022) <doi:10.1007/s13253-021-00469-9>; - Palacios et al (2024) <doi:10.1214/24-BA1420>.
Simulates and computes the (maximum) likelihood of a dynamical model of island biota assembly through speciation, immigration and extinction. See Valente et al. (2015) <doi:10.1111/ele.12461>.
This package provides a versatile toolkit for analyzing and visualizing DEXi (Decision EXpert for education) decision trees, facilitating multi-criteria decision analysis directly within R. Users can read .dxi files, manipulate decision trees, and evaluate various scenarios. It supports sensitivity analysis through Monte Carlo simulations, one-at-a-time approaches, and variance-based methods, helping to discern the impact of input variations. Additionally, it includes functionalities for generating sampling plans and an array of visualization options for decision trees and analysis results. A distinctive feature is the synoptic table plot, aiding in the efficient comparison of scenarios. Whether for in-depth decision modeling or sensitivity analysis, this package stands as a comprehensive solution. Definition of sensitivity analyses available in Carpani, Bergez and Monod (2012) <doi:10.1016/j.envsoft.2011.10.002> and detailed description of the package soon available in Alaphilippe et al. (2025) <doi:10.1016/j.simpa.2024.100729>.
This package provides a comprehensive set of wrapper functions for the analysis of multiplex metabarcode data. It includes robust wrappers for Cutadapt and DADA2 to trim primers, filter reads, perform amplicon sequence variant (ASV) inference, and assign taxonomy. The package can handle single metabarcode datasets, datasets with two pooled metabarcodes, or multiple datasets simultaneously. The final output is a matrix per metabarcode, containing both ASV abundance data and associated taxonomic assignments. An optional function converts these matrices into phyloseq and taxmap objects. For more information on DADA2', including information on how DADA2 infers samples sequences, see Callahan et al. (2016) <doi:10.1038/nmeth.3869>. For more details on the demulticoder R package see Sudermann et al. (2025) <doi:10.1094/PHYTO-02-25-0043-FI>.
This package provides functions for reading DCP and CDF.bin files generated by the dChip software.
Bayesian factor models are effective tools for dimension reduction. This is especially applicable to multivariate large-scale datasets. It allows researchers to understand the latent factors of the data which are the linear or non-linear combination of the variables. Dynamic Intrinsic Conditional Autocorrelative Priors (ICAR) Spatiotemporal Factor Models DIFM package provides function to run Markov Chain Monte Carlo (MCMC), evaluation methods and visual plots from Shin and Ferreira (2023)<doi:10.1016/j.spasta.2023.100763>. Our method is a class of Bayesian factor model which can account for spatial and temporal correlations. By incorporating these correlations, the model can capture specific behaviors and provide predictions.
This package provides methods for fitting nonstationary Gaussian process models by spatial deformation, as introduced by Sampson and Guttorp (1992) <doi:10.1080/01621459.1992.10475181>, and by dimension expansion, as introduced by Bornn et al. (2012) <doi:10.1080/01621459.2011.646919>. Low-rank thin-plate regression splines, as developed in Wood, S.N. (2003) <doi:10.1111/1467-9868.00374>, are used to either transform co-ordinates or create new latent dimensions.
This package contains functions that check for formatting of the Subject Phenotype data set and data dictionary as specified by the National Center for Biotechnology Information (NCBI) Database of Genotypes and Phenotypes (dbGaP) <https://www.ncbi.nlm.nih.gov/gap/docs/submissionguide/>.
Gives access to data visualisation methods that are relevant from the statistician's point of view. Using D3''s existing data visualisation tools to empower R language and environment. The throw chart method is a line chart used to illustrate paired data sets (such as before-after, male-female).
Statistical models fit to compositional data are often difficult to interpret due to the sum to 1 constraint on data variables. DImodelsVis provides novel visualisations tools to aid with the interpretation of models fit to compositional data. All visualisations in the package are created using the ggplot2 plotting framework and can be extended like every other ggplot object.
Joint dimension reduction and spatial clustering is conducted for Single-cell RNA sequencing and spatial transcriptomics data, and more details can be referred to Wei Liu, Xu Liao, Yi Yang, Huazhen Lin, Joe Yeong, Xiang Zhou, Xingjie Shi and Jin Liu. (2022) <doi:10.1093/nar/gkac219>. It is not only computationally efficient and scalable to the sample size increment, but also is capable of choosing the smoothness parameter and the number of clusters as well.
Loads behavioural data from the widely used Drosophila Activity Monitor System (DAMS, TriKinetics <https://trikinetics.com/>) into the rethomics framework.
This package provides a direct approach to optimal designs for copula models based on the Fisher information. Provides flexible functions for building joint PDFs, evaluating the Fisher information and finding optimal designs. It includes an extensible solution to summation and integration called nint', functions for transforming, plotting and comparing designs, as well as a set of tools for common low-level tasks.
This package provides a set of control charts for batch processes based on the VAR model. The package contains the implementation of T2.var and W.var control charts based on VAR model coefficients using the couple vectors theory. In each time-instant the VAR coefficients are estimated from a historical in-control dataset and a decision rule is made for online classifying of a new batch data. Those charts allow efficient online monitoring since the very first time-instant. The offline version is available too. In order to evaluate the chart's performance, this package contains functions to generate batch data for offline and online monitoring.See in Danilo Marcondes Filho and Marcio Valk (2020) <doi:10.1016/j.ejor.2019.12.038>.
This package provides documentation in form of a common vignette to packages distr', distrEx', distrMod', distrSim', distrTEst', distrTeach', and distrEllipse'.
Exploratory analysis of a data base. Using the functions of this package is possible to filter the data set detecting atypical values (outliers) and to perform exploratory analysis through visual inspection or dispersion measures. With this package you can explore the structure of your data using several parameters at the same time joining statistical parameters with different graphics. Finally, this package aid to confirm or reject the hypothesis that your data structure presents a normal distribution. Therefore this package is useful to get a previous insight of your data before to carry out statistical analysis.
Infer progression of circadian rhythms in transcriptome data in which samples are not labeled with time of day and coverage of the circadian cycle may be incomplete. See Shilts et al. (2018) <doi:10.7717/peerj.4327>.
The state-of-the-art algorithms for distance metric learning, including global and local methods such as Relevant Component Analysis, Discriminative Component Analysis, Local Fisher Discriminant Analysis, etc. These distance metric learning methods are widely applied in feature extraction, dimensionality reduction, clustering, classification, information retrieval, and computer vision problems.
Dynamic graphical models for multivariate time series data to estimate directed dynamic networks in functional magnetic resonance imaging (fMRI), see Schwab et al. (2017) <doi:10.1016/j.neuroimage.2018.03.074>.
Decomposing value added growth into explanatory factors. A cost constrained value added function is defined to specify the production frontier. Industry estimates can also be aggregated using a weighted average approach. Details about the methodology and data can be found in Diewert and Fox (2018) <doi:10.1093/oxfordhb/9780190226718.013.19> and Zeng, Parsons, Diewert and Fox (2018) <https://www.business.unsw.edu.au/research-site/centreforappliedeconomicresearch-site/Documents/emg2018-6_SZeng_EMG-Slides.pdf>.
This package provides a set of functions to quantify the relationship between development rate and temperature and to build phenological models. The package comprises a set of models and estimated parameters borrowed from a literature review in ectotherms. The methods and literature review are described in Rebaudo et al. (2018) <doi:10.1111/2041-210X.12935>, Rebaudo and Rabhi (2018) <doi:10.1111/eea.12693>, and Regnier et al. (2021) <doi:10.1093/ee/nvab115>. An example can be found in Rebaudo et al. (2017) <doi:10.1007/s13355-017-0480-5>.