Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package implements a Bayesian Optimal Phase II design (DTE-BOP2) for trials with delayed treatment effects, particularly relevant to immunotherapy studies where treatment benefits may emerge after a delay. The method builds upon the BOP2 framework and incorporates uncertainty in the delay timepoint through a truncated gamma prior, informed by expert knowledge or default settings. Supports two-arm trial designs with functionality for sample size determination, interim and final analyses, and comprehensive simulation under various delay and design scenarios. Ensures rigorous type I and II error control while improving trial efficiency and power when the delay effect is present. A manuscript describing the methodology is under development and will be formally referenced upon publication.
Work with data on Venetian doges and dogaresse and the noble families of the Republic of Venice, and use it for social network analysis, as used in Merelo (2022) <doi:10.48550/arXiv.2209.07334>.
This package provides functions for reading DCP and CDF.bin files generated by the dChip software.
Bayesian Beta Regression, adapted for bounded discrete responses, commonly seen in survey responses. Estimation is done via Markov Chain Monte Carlo sampling, using a Gibbs wrapper around univariate slice sampler (Neal (2003) <DOI:10.1214/aos/1056562461>), as implemented in the R package MfUSampler (Mahani and Sharabiani (2017) <DOI: 10.18637/jss.v078.c01>).
This package provides a tool developed with the Golem framework which provides an easier way to check cells differences between two data frames. The user provides two data frames for comparison, selects IDs variables identifying each row of input data, then clicks a button to perform the comparison. Several R package functions are used to describe the data and perform the comparison in the server of the application. The main ones are comparedf() from arsenal and skim() from skimr'. For more details see the description of comparedf() from the arsenal package and that of skim() from the skimr package.
This package provides wrapper of various machine learning models. In applied machine learning, there is a strong belief that we need to strike a balance between interpretability and accuracy. However, in field of the interpretable machine learning, there are more and more new ideas for explaining black-box models, that are implemented in R'. DALEXtra creates DALEX Biecek (2018) <doi:10.48550/arXiv.1806.08915> explainer for many type of models including those created using python scikit-learn and keras libraries, and java h2o library. Important part of the package is Champion-Challenger analysis and innovative approach to model performance across subsets of test data presented in Funnel Plot.
This package provides an interface to D4Science StorageHub API (<https://dev.d4science.org/>). Allows to get user profile, and perform actions over the StorageHub (workspace) including creation of folders, files management (upload/update/deletion/sharing), and listing of stored resources.
This package performs drug demand forecasting by modeling drug dispensing data while taking into account predicted enrollment and treatment discontinuation dates. The gap time between randomization and the first drug dispensing visit is modeled using interval-censored exponential, Weibull, log-logistic, or log-normal distributions (Anderson-Bergman (2017) <doi:10.18637/jss.v081.i12>). The number of skipped visits is modeled using Poisson, zero-inflated Poisson, or negative binomial distributions (Zeileis, Kleiber & Jackman (2008) <doi:10.18637/jss.v027.i08>). The gap time between two consecutive drug dispensing visits given the number of skipped visits is modeled using linear regression based on least squares or least absolute deviations (Birkes & Dodge (1993, ISBN:0-471-56881-3)). The number of dispensed doses is modeled using linear or linear mixed-effects models (McCulloch & Searle (2001, ISBN:0-471-19364-X)).
This package provides a set of tools to extract bibliographic content from Digital Science Dimensions using DSL API <https://www.dimensions.ai/dimensions-apis/>.
Clustered or multilevel data structures are common in the assessment of differential item functioning (DIF), particularly in the context of large-scale assessment programs. This package allows users to implement extensions of the Mantel-Haenszel DIF detection procedures in the presence of multilevel data based on the work of Begg (1999) <doi:10.1111/j.0006-341X.1999.00302.x>, Begg & Paykin (2001) <doi:10.1080/00949650108812115>, and French & Finch (2013) <doi:10.1177/0013164412472341>.
Explore data related to the Doctor Who TV series.
Makes it easy to engage with the Application Program Interface (API) of the TCdata360 and Govdata360 platforms at <https://tcdata360.worldbank.org/> and <https://govdata360.worldbank.org/>, respectively. These application program interfaces provide access to over 5000 trade, competitiveness, and governance indicator data, metadata, and related information from sources both inside and outside the World Bank Group. Package functions include easier download of data sets, metadata, and related information, as well as searching based on user-inputted query.
Shows you which rows have changed between two data frames with the same column structure. Useful for diffing slowly mutating data.
The recovery of visual sensitivity in a dark environment is known as dark adaptation. In a clinical or research setting the recovery is typically measured after a dazzling flash of light and can be described by the Mahroo, Lamb and Pugh (MLP) model of dark adaptation. The functions in this package take dark adaptation data and use nonlinear regression to find the parameters of the model that best describe the data. They do this by firstly, generating rapid initial objective estimates of data adaptation parameters, then a multi-start algorithm is used to reduce the possibility of a local minimum. There is also a bootstrap method to calculate parameter confidence intervals. The functions rely upon a dark list or object. This object is created as the first step in the workflow and parts of the object are updated as it is processed.
This package provides functions to download, process, and visualize German geospatial data across administrative levels, including states, districts, and municipalities. Supports interactive tables and customized maps using built-in or external datasets. Official shapefiles are accessed from the German Federal Agency for Cartography and Geodesy (BKG) <https://gdz.bkg.bund.de/>, licensed under dl-de/by-2-0 <https://www.govdata.de/dl-de/by-2-0>.
Diff, patch and merge for data frames. Document changes in data sets and use them to apply patches. Changes to data can be made visible by using render_diff(). The V8 package is used to wrap the daff.js JavaScript library which is included in the package.
Automated data exploration process for analytic tasks and predictive modeling, so that users could focus on understanding data and extracting insights. The package scans and analyzes each variable, and visualizes them with typical graphical techniques. Common data processing methods are also available to treat and format data.
Automatic generation of finite state machine models of dynamic decision-making that both have strong predictive power and are interpretable in human terms. We use an efficient model representation and a genetic algorithm-based estimation process to generate simple deterministic approximations that explain most of the structure of complex stochastic processes. We have applied the software to empirical data, and demonstrated it's ability to recover known data-generating processes by simulating data with agent-based models and correctly deriving the underlying decision models for multiple agent models and degrees of stochasticity.
Intensive longitudinal data have become increasingly prevalent in various scientific disciplines. Many such data sets are noisy, multivariate, and multi-subject in nature. The change functions may also be continuous, or continuous but interspersed with periods of discontinuities (i.e., showing regime switches). The package dynr (Dynamic Modeling in R) is an R package that implements a set of computationally efficient algorithms for handling a broad class of linear and nonlinear discrete- and continuous-time models with regime-switching properties under the constraint of linear Gaussian measurement functions. The discrete-time models can generally take on the form of a state-space or difference equation model. The continuous-time models are generally expressed as a set of ordinary or stochastic differential equations. All estimation and computations are performed in C, but users are provided with the option to specify the model of interest via a set of simple and easy-to-learn model specification functions in R. Model fitting can be performed using single-subject time series data or multiple-subject longitudinal data. Ou, Hunter, & Chow (2019) <doi:10.32614%2FRJ-2019-012> provided a detailed introduction to the interface and more information on the algorithms.
This package provides a Bayesian hierarchical model for clustering dissimilarity data using the Dirichlet process. The latent configuration of objects and the number of clusters are automatically inferred during the fitting process. The package supports multiple models which are available to detect clusters of various shapes and sizes using different covariance structures. Additional functions are included to ensure adequate model fits through prior and posterior predictive checks.
This package provides a comprehensive framework for early epidemic detection through school absenteeism surveillance. The package offers three core functionalities: (1) simulation of population structures, epidemic spread, and resulting school absenteeism patterns; (2) implementation of surveillance models that generate alerts for impending epidemics based on absenteeism data and (3) evaluation of alert timeliness and accuracy through alert time quality metrics to optimize model parameters. These tools enable public health officials and researchers to develop and assess early warning systems before implementation. Methods are based on research published in Vanderkruk et al. (2023) <doi:10.1186/s12889-023-15747-z> and Ward et al. (2019) <doi:10.1186/s12889-019-7521-7>.
Evaluation (S4-)classes based on package distr for evaluating procedures (estimators/tests) at data/simulation in a unified way.
This package provides a general framework using mixture Weibull distributions to accurately predict biomarker-guided trial duration accounting for heterogeneous population. Extensive simulations are performed to evaluate the impact of heterogeneous population and the dynamics of biomarker characteristics and disease on the study duration. Several influential parameters including median survival time, enrollment rate, biomarker prevalence and effect size are identified. Efficiency gains of biomarker-guided trials can be quantitatively compared to the traditional all-comers design. For reference, see Zhang et al. (2024) <arXiv:2401.00540>.
Measurement and partitioning of diversity, based on Tsallis entropy, following Marcon and Herault (2015) <doi:10.18637/jss.v067.i08>. divent provides functions to estimate alpha, beta and gamma diversity of communities, including phylogenetic and functional diversity.