Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Extends the functionality of other plotting packages (notably ggplot2') to help facilitate the plotting of data over long time intervals, including, but not limited to, geological, evolutionary, and ecological data. The primary goal of deeptime is to enable users to add highly customizable timescales to their visualizations. Other functions are also included to assist with other areas of deep time visualization.
This package provides a concise check of the format of one or multiple input arguments (data type, length or value) is provided. Since multiple input arguments can be tested simultaneously, a lengthly list of checks at the beginning of your function can be avoided, hereby enhancing the readability and maintainability of your code.
This package provides a comprehensive visualization toolkit built with coders of all skill levels and color-vision impaired audiences in mind. It allows creation of finely-tuned, publication-quality figures from single function calls. Visualizations include scatter plots, compositional bar plots, violin, box, and ridge plots, and more. Customization ranges from size and title adjustments to discrete-group circling and labeling, hidden data overlay upon cursor hovering via ggplotly() conversion, and many more, all with simple, discrete inputs. Color blindness friendliness is powered by legend adjustments (enlarged keys), and by allowing the use of shapes or letter-overlay in addition to the carefully selected dittoColors().
DataSHIELD is an infrastructure and series of R packages that enables the remote and non-disclosive analysis of sensitive research data. This package defines the API that is to be implemented by DataSHIELD compliant data repositories.
What is funnier than a dad joke? A dad joke in R! This package utilizes the API for <https://icanhazdadjoke.com> and returns dad jokes from several API endpoints.
Work within the dplyr workflow to add random variates to your data frame. Variates can be added at any level of an existing column. Also, bounds can be specified for simulated variates.
Fit and explore Drift Diffusion Models (DDMs), a common tool in psychology for describing decision processes in simple tasks. It can handle both time-independent and time-dependent DDMs. You either choose prebuilt models or create your own, and the package takes care of model predictions and parameter estimation. Model predictions are derived via the numerical solutions provided by Richter, Ulrich, and Janczyk (2023, <doi:10.1016/j.jmp.2023.102756>).
This package provides a series of functions which aid in both simulating and determining the properties of finite, discrete-time, discrete state markov chains. Two functions (DTMC, MultDTMC) produce n iterations of a Markov Chain(s) based on transition probabilities and an initial distribution. The function FPTime determines the first passage time into each state. The function statdistr determines the stationary distribution of a Markov Chain.
This package provides functions are provided that facilitate the import and analysis of SNP (single nucleotide polymorphism) and silicodart (presence/absence) data. The main focus is on data generated by DarT (Diversity Arrays Technology), however, data from other sequencing platforms can be used once SNP or related fragment presence/absence data from any source is imported. Genetic datasets are stored in a derived genlight format (package adegenet'), that allows for a very compact storage of data and metadata. Functions are available for importing and exporting of SNP and silicodart data, for reporting on and filtering on various criteria (e.g. CallRate', heterozygosity, reproducibility, maximum allele frequency). Additional functions are available for visualization (e.g. Principle Coordinate Analysis) and creating a spatial representation using maps. dartR supports also the analysis of 3rd party software package such as newhybrid', structure', NeEstimator and blast'. Since version 2.0.3 we also implemented simulation functions, that allow to forward simulate SNP dynamics under different population and evolutionary dynamics. Comprehensive tutorials and support can be found at our github repository: github.com/green-striped-gecko/dartR/. If you want to cite dartR', you find the information by typing citation('dartR') in the console.
Utility functions to be used to analyse datasets obtained from seed germination/emergence assays. Fits several types of seed germination/emergence models, including those reported in Onofri et al. (2018) "Hydrothermal-time-to-event models for seed germination", European Journal of Agronomy, 101, 129-139 <doi:10.1016/j.eja.2018.08.011>. Contains several datasets for practicing.
This package provides functions for direct surrogate variable analysis, which can identify hidden factors in high-dimensional biomedical data.
Simple Principal Components Analysis (PCA) and (Multiple) Correspondence Analysis (CA) based on the Singular Value Decomposition (SVD). This package provides S4 classes and methods to compute, extract, summarize and visualize results of multivariate data analysis. It also includes methods for partial bootstrap validation described in Greenacre (1984, ISBN: 978-0-12-299050-2) and Lebart et al. (2006, ISBN: 978-2-10-049616-7).
Generate motivational quotes and Shakespearean word combinations (bardâ bits) that a user can consider for their personal projects. Each of the package functions takes two arguments, cat which default to any, and a a numeric or character seed to ensure reproducible results.
Interface to the python package dgpsi for Gaussian process, deep Gaussian process, and linked deep Gaussian process emulations of computer models and networks using stochastic imputation (SI). The implementations follow Ming & Guillas (2021) <doi:10.1137/20M1323771> and Ming, Williamson, & Guillas (2023) <doi:10.1080/00401706.2022.2124311> and Ming & Williamson (2023) <doi:10.48550/arXiv.2306.01212>. To get started with the package, see <https://mingdeyu.github.io/dgpsi-R/>.
Time-varying coefficient models for interval censored and right censored survival data including 1) Bayesian Cox model with time-independent, time-varying or dynamic coefficients for right censored and interval censored data studied by Sinha et al. (1999) <doi:10.1111/j.0006-341X.1999.00585.x> and Wang et al. (2013) <doi:10.1007/s10985-013-9246-8>, 2) Spline based time-varying coefficient Cox model for right censored data proposed by Perperoglou et al. (2006) <doi:10.1016/j.cmpb.2005.11.006>, and 3) Transformation model with time-varying coefficients for right censored data using estimating equations proposed by Peng and Huang (2007) <doi:10.1093/biomet/asm058>.
Allows for export of DiagrammeR Graphviz objects to SVG.
An intuitive, cross-platform graphical data analysis system. It uses menus and dialogs to guide the user efficiently through the data manipulation and analysis process, and has an excel like spreadsheet for easy data frame visualization and editing. Deducer works best when used with the Java based R GUI JGR, but the dialogs can be called from the command line. Dialogs have also been integrated into the Windows Rgui.
This package provides a small package containing helper utilities for creating functions for computing statistics.
Collects libphonenumber jars required for the dialr package.
This package provides time series regression models with one predictor using finite distributed lag models, polynomial (Almon) distributed lag models, geometric distributed lag models with Koyck transformation, and autoregressive distributed lag models. It also consists of functions for computation of h-step ahead forecasts from these models. See Demirhan (2020)(<doi:10.1371/journal.pone.0228812>) and Baltagi (2011)(<doi:10.1007/978-3-642-20059-5>) for more information.
This is the core package that provides both the user API and developer API to deploy the parallel cluster on the cloud using the container service. The user can call clusterPreset() to define the cloud service provider and container and makeDockerCluster() to create the cluster. The developer should see "developer's cookbook" on how to define the cloud provider and container.
Several statistical methods for analyzing survival data under various forms of dependent censoring are implemented in the package. In addition to accounting for dependent censoring, it offers tools to adjust for unmeasured confounding factors. The implemented approaches allow users to estimate the dependency between survival time and dependent censoring time, based solely on observed survival data. For more details on the methods, refer to Deresa and Van Keilegom (2021) <doi:10.1093/biomet/asaa095>, Czado and Van Keilegom (2023) <doi:10.1093/biomet/asac067>, Crommen et al. (2024) <doi:10.1007/s11749-023-00903-9>, Deresa and Van Keilegom (2024) <doi:10.1080/01621459.2022.2161387>, Willems et al. (2025) <doi:10.48550/arXiv.2403.11860>, Ding and Van Keilegom (2025) and D'Haen et al. (2025) <doi:10.1007/s10985-025-09647-0>.
This package provides a collection of methods for automated data cleaning where all actions are logged.
The goal of dlr is to provide a friendly wrapper around the common pattern of downloading a file if that file does not already exist locally.