Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Generate motivational quotes and Shakespearean word combinations (bardâ bits) that a user can consider for their personal projects. Each of the package functions takes two arguments, cat which default to any, and a a numeric or character seed to ensure reproducible results.
This package provides methods for working with nominal dates, times, and durations. Base R has sophisticated facilities for handling time, but these can give unexpected results if, for example, timezone is not handled properly. This package provides a more casual approach to support cases which do not require rigorous treatment. It systematically deconstructs the concepts origin and timezone, and de-emphasizes the display of seconds. It also converts among nominal durations such as seconds, hours, days, and weeks. See ?datetime and ?duration for examples. Adapted from metrumrg <http://r-forge.r-project.org/R/?group_id=1215>.
This package creates the "table one" of bio-medical papers. Fill it with your data and the name of the variable which you'll make the group(s) out of and it will make univariate, bivariate analysis and parse it into HTML. It also allows you to visualize all your data with graphic representation.
This package implements the Oaxaca-Blinder decomposition method and generalizations of it that decompose differences in distributional statistics beyond the mean. The function ob_decompose() decomposes differences in the mean outcome between two groups into one part explained by different covariates (composition effect) and into another part due to differences in the way covariates are linked to the outcome variable (structure effect). The function further divides the two effects into the contribution of each covariate and allows for weighted doubly robust decompositions. For distributional statistics beyond the mean, the function performs the recentered influence function (RIF) decomposition proposed by Firpo, Fortin, and Lemieux (2018). The function dfl_decompose() divides differences in distributional statistics into an composition effect and a structure effect using inverse probability weighting as introduced by DiNardo, Fortin, and Lemieux (1996). The function also allows to sequentially decompose the composition effect into the contribution of single covariates. References: Firpo, Sergio, Nicole M. Fortin, and Thomas Lemieux. (2018) <doi:10.3390/econometrics6020028>. "Decomposing Wage Distributions Using Recentered Influence Function Regressions." Fortin, Nicole M., Thomas Lemieux, and Sergio Firpo. (2011) <doi:10.3386/w16045>. "Decomposition Methods in Economics." DiNardo, John, Nicole M. Fortin, and Thomas Lemieux. (1996) <doi:10.2307/2171954>. "Labor Market Institutions and the Distribution of Wages, 1973-1992: A Semiparametric Approach." Oaxaca, Ronald. (1973) <doi:10.2307/2525981>. "Male-Female Wage Differentials in Urban Labor Markets." Blinder, Alan S. (1973) <doi:10.2307/144855>. "Wage Discrimination: Reduced Form and Structural Estimates.".
This package provides functions and example datasets to run a decision-analytic model for prevention and treatment strategies across depression severity states (sub-clinical, mild, moderate, severe, and recurrent). The package supports scenario analyses (base and alternative inputs) and summarises outcomes such as coverage, adherence, effect sizes, and healthcare costs.
This package contains a range of functions covering the present development of the distributional method for the dichotomisation of continuous outcomes. The method provides estimates with standard error of a comparison of proportions (difference, odds ratio and risk ratio) derived, with similar precision, from a comparison of means. See the URL below or <arXiv:1809.03279> for more information.
Compute estimates and confidence intervals of weighted averages quickly and easily. Weighted averages are computed using data.table for speed. Confidence intervals are approximated using the delta method with either using known formulae or via algorithmic or numerical integration.
Fast distributed/parallel estimation for multinomial logistic regression via Poisson factorization and the gamlr package. For details see: Taddy (2015, AoAS), Distributed Multinomial Regression, <doi:10.48550/arXiv.1311.6139>.
The dynpred package contains functions for dynamic prediction in survival analysis.
This package creates survey designs for distance sampling surveys. These designs can be assessed for various effort and coverage statistics. Once the user is satisfied with the design characteristics they can generate a set of transects to use in their distance sampling survey. Many of the designs implemented in this R package were first made available in our Distance for Windows software and are detailed in Chapter 7 of Advanced Distance Sampling, Buckland et. al. (2008, ISBN-13: 978-0199225873). Find out more about estimating animal/plant abundance with distance sampling at <https://distancesampling.org/>.
This package contains data sets, examples and software from the Second Edition of "Design of Observational Studies"; see Rosenbaum, P.R. (2010) <doi:10.1007/978-1-4419-1213-8>.
This package provides tools for working with multiple related tables, stored as data frames or in a relational database. Multiple tables (data and metadata) are stored in a compound object, which can then be manipulated with a pipe-friendly syntax.
Implement DiSTATIS and CovSTATIS (three-way multidimensional scaling). DiSTATIS and CovSTATIS are used to analyze multiple distance/covariance matrices collected on the same set of observations. These methods are based on Abdi, H., Williams, L.J., Valentin, D., & Bennani-Dosse, M. (2012) <doi:10.1002/wics.198>.
Visualize one-factor data frame. Beads plot consists of diamonds of each factor of each data series. A diamond indicates average and range. Look over a data frame with many numeric columns and a factor column.
The DALY Calculator is a free, open-source Graphical User Interface (GUI) for stochastic disability-adjusted life year (DALY) calculation.
Implement weighted higher-order initialization and angle-based iteration for multi-way spherical clustering under degree-corrected tensor block model. See reference Jiaxin Hu and Miaoyan Wang (2023) <doi:10.1109/TIT.2023.3239521>.
This package provides a toolkit for parsing dice notation, analyzing rolls, calculating success probabilities, and plotting outcome distributions.
Implementation of some Deep Learning methods. Includes multilayer perceptron, different activation functions, regularisation strategies, stochastic gradient descent and dropout. Thanks go to the following references for helping to inspire and develop the package: Ian Goodfellow, Yoshua Bengio, Aaron Courville, Francis Bach (2016, ISBN:978-0262035613) Deep Learning. Terrence J. Sejnowski (2018, ISBN:978-0262038034) The Deep Learning Revolution. Grant Sanderson (3brown1blue) <https://www.youtube.com/playlist?list=PLZHQObOWTQDNU6R1_67000Dx_ZCJB-3pi> Neural Networks YouTube playlist. Michael A. Nielsen <http://neuralnetworksanddeeplearning.com/> Neural Networks and Deep Learning.
The assay sensitivity is the minimum number of copies that the digital PCR assay can detect. Users provide serial dilution results in the format of counts of positive and total reaction wells. The output is the estimated assay sensitivity and the copy number per well in the initial dilute.
Estimate common causal parameters using double/debiased machine learning as proposed by Chernozhukov et al. (2018) <doi:10.1111/ectj.12097>. ddml simplifies estimation based on (short-)stacking as discussed in Ahrens et al. (2024) <doi:10.1002/jae.3103>, which leverages multiple base learners to increase robustness to the underlying data generating process.
Compares distributions with one another in terms of their fit to each sample in a dataset that contains multiple samples, as described in Joo, Aguinis, and Bradley (in press). Users can examine the fit of seven distributions per sample: pure power law, lognormal, exponential, power law with an exponential cutoff, normal, Poisson, and Weibull. Automation features allow the user to compare all distributions for all samples with a single command line, which creates a separate row containing results for each sample until the entire dataset has been analyzed.
Computations of Fisher's z-tests concerning different kinds of correlation differences. The diffpwr family entails approaches to estimating statistical power via Monte Carlo simulations. Important to note, the Pearson correlation coefficient is sensitive to linear association, but also to a host of statistical issues such as univariate and bivariate outliers, range restrictions, and heteroscedasticity (e.g., Duncan & Layard, 1973 <doi:10.1093/BIOMET/60.3.551>; Wilcox, 2013 <doi:10.1016/C2010-0-67044-1>). Thus, every power analysis requires that specific statistical prerequisites are fulfilled and can be invalid if the prerequisites do not hold. To this end, the bootcor family provides bootstrapping confidence intervals for the incorporated correlation difference tests.
Likelihood-based inference for skewed count distributions, typically of degrees used in network modeling. "degreenet" is a part of the "statnet" suite of packages for network analysis. See Jones and Handcock <doi:10.1098/rspb.2003.2369>.
Dominance analysis is a method that allows to compare the relative importance of predictors in multiple regression models: ordinary least squares, generalized linear models, hierarchical linear models, beta regression and dynamic linear models. The main principles and methods of dominance analysis are described in Budescu, D. V. (1993) <doi:10.1037/0033-2909.114.3.542> and Azen, R., & Budescu, D. V. (2003) <doi:10.1037/1082-989X.8.2.129> for ordinary least squares regression. Subsequently, the extensions for multivariate regression, logistic regression and hierarchical linear models were described in Azen, R., & Budescu, D. V. (2006) <doi:10.3102/10769986031002157>, Azen, R., & Traxel, N. (2009) <doi:10.3102/1076998609332754> and Luo, W., & Azen, R. (2013) <doi:10.3102/1076998612458319>, respectively.