Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Analysis, visualisation and simulation of digital polymerase chain reaction (dPCR) (Burdukiewicz et al. (2016) <doi:10.1016/j.bdq.2016.06.004>). Supports data formats of commercial systems (Bio-Rad QX100 and QX200; Fluidigm BioMark) and other systems.
Phase I/II adaptive dose-finding design for combination studies where toxicity rates are supposed to increase with both agents.
Alpha and beta diversity for taxonomic (TD), functional (FD), and phylogenetic (PD) dimensions based on rasters. Spatial and temporal beta diversity can be partitioned into replacement and richness difference components. It also calculates standardized effect size for FD and PD alpha diversity and the average individual traits across multilayer rasters. The layers of the raster represent species, while the cells represent communities. Methods details can be found at Cardoso et al. 2022 <https://CRAN.R-project.org/package=BAT> and Heming et al. 2023 <https://CRAN.R-project.org/package=SESraster>.
Functionalities for analyzing high-dimensional and longitudinal biomarker data to facilitate precision medicine, using a joint model of Bayesian sparse factor analysis and dependent Gaussian processes. This paper illustrates the method in detail: J Cai, RJB Goudie, C Starr, BDM Tom (2023) <doi:10.48550/arXiv.2307.02781>.
Discriminant Adaptive Nearest Neighbor Classification is a variation of k nearest neighbors where the shape of the neighborhood is data driven. This package implements dann and sub_dann from Hastie (1996) <https://web.stanford.edu/~hastie/Papers/dann_IEEE.pdf>.
Offers meta programming style tools to generate configurable R functions that produce HTML forms based on table input and SQL meta data. Also generates functions for collecting the parameters of those HTML forms after they are submitted. Useful for quickly generating HTML forms based on existing SQL tables. To use the resultant functions, the output files containing those functions must be read into the R environment (perhaps using base::source()).
Statistical deadband algorithms are based on the Send-On-Delta concept as in Miskowicz(2006,<doi:10.3390/s6010049>). A collection of functions compare effectiveness and fidelity of sampled signals using statistical deadband algorithms.
Computes the ATM (Attractor Transition Matrix) structure and the tree-like structure describing the cell differentiation process (based on the Threshold Ergodic Set concept introduced by Serra and Villani), starting from the Boolean networks with synchronous updating scheme of the BoolNet R package. TESs (Threshold Ergodic Sets) are the mathematical abstractions that represent the different cell types arising during ontogenesis. TESs and the powerful model of biological differentiation based on Boolean networks to which it belongs have been firstly described in "A Dynamical Model of Genetic Networks for Cell Differentiation" Villani M, Barbieri A, Serra R (2011) A Dynamical Model of Genetic Networks for Cell Differentiation. PLOS ONE 6(3): e17703.
Construction and analysis of matrix population models in R.
This package performs analysis of popular experimental designs used in the field of biological research. The designs covered are completely randomized design, randomized complete block design, factorial completely randomized design, factorial randomized complete block design, split plot design, strip plot design and latin square design. The analysis include analysis of variance, coefficient of determination, normality test of residuals, standard error of mean, standard error of difference and multiple comparison test of means. The package has functions for transformation of data and yield data conversion. Some datasets are also added in order to facilitate examples.
This package provides functions to impute large gaps within time series based on Dynamic Time Warping methods. It contains all required functions to create large missing consecutive values within time series and to fill them, according to the paper Phan et al. (2017), <DOI:10.1016/j.patrec.2017.08.019>. Performance criteria are added to compare similarity between two signals (query and reference).
We offer an implementation of the series representation put forth in "A series representation for multidimensional Rayleigh distributions" by Wiegand and Nadarajah <DOI: 10.1002/dac.3510>. Furthermore we have implemented an integration approach proposed by Beaulieu et al. for 3 and 4-dimensional Rayleigh densities (Beaulieu, Zhang, "New simplest exact forms for the 3D and 4D multivariate Rayleigh PDFs with applications to antenna array geometrics", <DOI: 10.1109/TCOMM.2017.2709307>).
This package provides a tool to calculate the correlation boundary for the correlation between the response rate and the log-rank test statistic for the binary surrogate endpoint and the time-to-event primary endpoint, as well as conduct simulation studies to obtain design operating characteristics of the drop-the-losers design.
This package provides a set of functions to perform Raju, van der Linden and Fleer's (1995, <doi:10.1177/014662169501900405>) Differential Functioning of Items and Tests (DFIT) analyses. It includes functions to use the Monte Carlo Item Parameter Replication approach (Oshima, Raju, & Nanda, 2006, <doi:10.1111/j.1745-3984.2006.00001.x>) for obtaining the associated statistical significance tests cut-off points. They may also be used for a priori and post-hoc power calculations (Cervantes, 2017, <doi:10.18637/jss.v076.i05>).
This package provides statistical tools for analyzing net and relative survival, with a key feature of relaxing the assumption of independent censoring and incorporating the effect of dependent competing risks. It employs a copula-based methodology, specifically the Archimedean copula, to simulate data, conduct survival analysis, and offer comparisons with other methods. This approach is detailed in the work of Adatorwovor et al. (2022) <doi:10.1515/ijb-2021-0016>.
Models for detecting concreteness in natural language. This package is built in support of Yeomans (2021) <doi:10.1016/j.obhdp.2020.10.008>, which reviews linguistic models of concreteness in several domains. Here, we provide an implementation of the best-performing domain-general model (from Brysbaert et al., (2014) <doi:10.3758/s13428-013-0403-5>) as well as two pre-trained models for the feedback and plan-making domains.
This package performs the identification of differential risk hotspots (Briz-Redon et al. 2019) <doi:10.1016/j.aap.2019.105278> along a linear network. Given a marked point pattern lying on the linear network, the method implemented uses a network-constrained version of kernel density estimation (McSwiggan et al. 2017) <doi:10.1111/sjos.12255> to approximate the probability of occurrence across space for the type of event specified by the user through the marks of the pattern (Kelsall and Diggle 1995) <doi:10.2307/3318678>. The goal is to detect microzones of the linear network where the type of event indicated by the user is overrepresented.
Computes discrete fast Fourier transform of river discharge data and the derived metrics. The methods are described in J. L. Sabo, D. M. Post (2008) <doi:10.1890/06-1340.1> and J. L. Sabo, A. Ruhi, G. W. Holtgrieve, V. Elliott, M. E. Arias, P. B. Ngor, T. A. Räsänsen, S. Nam (2017) <doi:10.1126/science.aao1053>.
This package implements a likelihood-based method for genome polarization, identifying which alleles of SNV markers belong to either side of a barrier to gene flow. The approach co-estimates individual assignment, barrier strength, and divergence between sides, with direct application to studies of hybridization. Includes VCF-to-diem conversion and input checks, support for mixed ploidy and parallelization, and tools for visualization and diagnostic outputs. Based on diagnostic index expectation maximization as described in Baird et al. (2023) <doi:10.1111/2041-210X.14010>.
This package provides tools to estimate and manage empirical distributions, which should work with survey data. One of the main features is the possibility to create data cubes of estimated statistics, that include all the combinations of the variables of interest (see for example functions dcc5() and dcc6()).
This package provides friendly wrappers for creating duckdb'-backed connections to tabular datasets ('csv', parquet, etc) on local or remote file systems. This mimics the behaviour of "open_dataset" in the arrow package, but in addition to S3 file system also generalizes to any list of http URLs.
Facilitates the import and analysis of SNP (single nucleotide polymorphism') and silicodart (presence/absence) data. The main focus is on data generated by DarT (Diversity Arrays Technology), however, data from other sequencing platforms can be used once SNP or related fragment presence/absence data from any source is imported. Genetic datasets are stored in a derived genlight format (package adegenet'), that allows for a very compact storage of data and metadata. Functions are available for importing and exporting of SNP and silicodart data, for reporting on and filtering on various criteria (e.g. callrate', heterozygosity', reproducibility', maximum allele frequency). Additional functions are available for visualization (e.g. Principle Coordinate Analysis) and creating a spatial representation using maps. dartR.base is the base package of the dartRverse suits of packages. To install the other packages, we recommend to install the dartRverse package, that supports the installation of all packages in the dartRverse'. If you want to cite dartR', you find the information by typing citation('dartR.base') in the console.
Supports import/export for a number of datetime string standards and R datetime classes often including lossless re-export of any original reduced precision including ISO 8601 <https://en.wikipedia.org/wiki/ISO_8601> and pdfmark <https://opensource.adobe.com/dc-acrobat-sdk-docs/library/pdfmark/> datetime strings. Supports local/global datetimes with optional UTC offsets and/or (possibly heterogeneous) time zones with up to nanosecond precision.
An interface to explore, analyze, and visualize droplet digital PCR (ddPCR) data in R. This is the first non-proprietary software for analyzing two-channel ddPCR data. An interactive tool was also created and is available online to facilitate this analysis for anyone who is not comfortable with using R.