Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides a comprehensive visualization toolkit built with coders of all skill levels and color-vision impaired audiences in mind. It allows creation of finely-tuned, publication-quality figures from single function calls. Visualizations include scatter plots, compositional bar plots, violin, box, and ridge plots, and more. Customization ranges from size and title adjustments to discrete-group circling and labeling, hidden data overlay upon cursor hovering via ggplotly() conversion, and many more, all with simple, discrete inputs. Color blindness friendliness is powered by legend adjustments (enlarged keys), and by allowing the use of shapes or letter-overlay in addition to the carefully selected dittoColors().
Quality control and formatting tools developed for the Copernicus Data Rescue Service. The package includes functions to handle the Station Exchange Format (SEF), various statistical tests for climate data at daily and sub-daily resolution, as well as functions to plot the data. For more information and documentation see <https://datarescue.climate.copernicus.eu/st_data-quality-control>.
Identifies, filters and exports sex linked markers using SNP (single nucleotide polymorphism) data. To install the other packages, we recommend to install the dartRverse package, that supports the installation of all packages in the dartRverse'. If you want understand the applied rational to identify sexlinked markers and/or want to cite dartR.sexlinked', you find the information by typing citation('dartR.sexlinked') in the console.
The Discrete Transmuted Generalized Inverse Weibull (DTGIW) distribution is a new distribution for count data analysis. The DTGIW is discrete distribution based on Atchanut and Sirinapa (2021). <DOI: 10.14456/sjst-psu.2021.149>.
Works as an "add-on" to packages like shiny', future', as well as rlang', and provides utility functions. Just like dipping sauce adding flavors to potato chips or pita bread, dipsaus for data analysis and visualizations adds handy functions and enhancements to popular packages. The goal is to provide simple solutions that are frequently asked for online, such as how to synchronize shiny inputs without freezing the app, or how to get memory size on Linux or MacOS system. The enhancements roughly fall into these four categories: 1. shiny input widgets; 2. high-performance computing using the future package; 3. modify R calls and convert among numbers, strings, and other objects. 4. utility functions to get system information such like CPU chip-set, memory limit, etc.
Detrend fluorescence microscopy image series for fluorescence fluctuation and correlation spectroscopy ('FCS and FFS') analysis. This package contains functionality published in a 2016 paper <doi:10.1093/bioinformatics/btx434> but it has been extended since then with the Robin Hood algorithm and thus contains unpublished work.
This package provides a convenient framework to simulate, test, power, and visualize data for differential expression studies with lognormal or negative binomial outcomes. Supported designs are two-sample comparisons of independent or dependent outcomes. Power may be summarized in the context of controlling the per-family error rate or family-wise error rate. Negative binomial methods are described in Yu, Fernandez, and Brock (2017) <doi:10.1186/s12859-017-1648-2> and Yu, Fernandez, and Brock (2020) <doi:10.1186/s12859-020-3541-7>.
Load configuration from a .env file, that is in the current working directory, into environment variables.
Implement download buttons in HTML output from rmarkdown without the need for runtime:shiny'.
To calculate the sensitivity and specificity in the absence of gold standard using the Bayesian method. The Bayesian method can be referenced at Haiyan Gu and Qiguang Chen (1999) <doi:10.3969/j.issn.1002-3674.1999.04.004>.
This package provides a systematic biology tool was developed to repurpose drugs via a subpathway crosstalk network. The operation modes include 1) calculating centrality scores of SPs in the context of gene expression data to reflect the influence of SP crosstalk, 2) evaluating drug-disease reverse association based on disease- and drug-induced SPs weighted by the SP crosstalk, 3) identifying cancer candidate drugs through perturbation analysis. There are also several functions used to visualize the results.
Displays a terrible joke, the kind only dads crack.
Using these tools to simplify the research process of political science and other social sciences. The current version can create folder system for academic project in political science, calculate psychological trait scores, visualize experimental and spatial data, and set up color-blind palette, functions used in academic research of political psychology or political science in general.
Calculates Distinctiveness Centrality in social networks. For formulas and descriptions, see Fronzetti Colladon and Naldi (2020) <doi:10.1371/journal.pone.0233276>.
This package provides methods for analyzing population dynamics and movement tracks simulated using the DEPONS model <https://www.depons.eu> (v.3.0), for manipulating input raster files, shipping routes and for analyzing sound propagated from ships.
This package provides a single function that supports the installation of all packages belonging to the dartRverse'. The dartRverse is a set of packages that work together to analyse SNP (single nuclear polymorphism) data. All packages aim to have a similar look and feel and are based on the same type of data structure ('genlight'), with additional metadata for loci and individuals (samples). For more information visit the GitHub pages <https://github.com/green-striped-gecko/dartRverse>.
This package implements a flexible, versatile, and computationally tractable model for density regression based on a single-weights dependent Dirichlet process mixture of normal distributions model for univariate continuous responses. The model assumes an additive structure for the mean of each mixture component and the effects of continuous covariates are captured through smooth nonlinear functions. The key components of our modelling approach are penalised B-splines and their bivariate tensor product extension. The proposed method can also easily deal with parametric effects of categorical covariates, linear effects of continuous covariates, interactions between categorical and/or continuous covariates, varying coefficient terms, and random effects. Please see Rodriguez-Alvarez, Inacio et al. (2025) for more details.
This package provides functions to randomly select, return, and print quotes or entire scenes from the American version of the show the Office. Receive laughs from one of of the greatest sitcoms of all time on demand. Add these functions to your .Rprofile to get a good laugh everytime you start a new R session.
Containing the Detrended Fluctuation Analysis (DFA), Detrended Cross-Correlation Analysis (DCCA), Detrended Cross-Correlation Coefficient (rhoDCCA), Delta Amplitude Detrended Cross-Correlation Coefficient (DeltarhoDCCA), log amplitude Detrended Fluctuation Analysis (DeltalogDFA), and the Activity Balance Index, it also includes two DFA automatic methods for identifying crossover points and a Deltalog automatic method for identifying reference channels.
Discriminant Non-Negative Matrix Factorization aims to extend the Non-negative Matrix Factorization algorithm in order to extract features that enforce not only the spatial locality, but also the separability between classes in a discriminant manner. It refers to three article, Zafeiriou, Stefanos, et al. "Exploiting discriminant information in nonnegative matrix factorization with application to frontal face verification." Neural Networks, IEEE Transactions on 17.3 (2006): 683-695. Kim, Bo-Kyeong, and Soo-Young Lee. "Spectral Feature Extraction Using dNMF for Emotion Recognition in Vowel Sounds." Neural Information Processing. Springer Berlin Heidelberg, 2013. and Lee, Soo-Young, Hyun-Ah Song, and Shun-ichi Amari. "A new discriminant NMF algorithm and its application to the extraction of subtle emotional differences in speech." Cognitive neurodynamics 6.6 (2012): 525-535.
This package provides methods for analyzing the dispersion of tabular datasets with batched and ordered samples. Based on convex hull or integrated covariance Mahalanobis, several indicators are implemented for inter and intra batch dispersion analysis. It is designed to facilitate robust statistical assessment of data variability, supporting applications in exploratory data analysis and quality control, for such datasets as the one found in metabololomics studies. For more details see Salanon (2024) <doi:10.1016/j.chemolab.2024.105148> and Salanon (2025) <doi:10.1101/2025.08.01.668073>.
Helps to describe a data frame in hand. Has been developed during PhD work of the maintainer. More information may be obtained from Garai and Paul (2023) <doi:10.1016/j.iswa.2023.200202>.
Models the relationship between dose levels and responses in a pharmacological experiment using the 4 Parameter Logistic model. Traditional packages on dose-response modelling such as drc and nplr often draw errors due to convergence failure especially when data have outliers or non-logistic shapes. This package provides robust estimation methods that are less affected by outliers and other initialization methods that work well for data lacking logistic shapes. We provide the bounds on the parameters of the 4PL model that prevent parameter estimates from diverging or converging to zero and base their justification in a statistical principle. These methods are used as remedies to convergence failure problems. Gadagkar, S. R. and Call, G. B. (2015) <doi:10.1016/j.vascn.2014.08.006> Ritz, C. and Baty, F. and Streibig, J. C. and Gerhard, D. (2015) <doi:10.1371/journal.pone.0146021>.
This package provides functions for inferring longitudinal dominance hierarchies, which describe dominance relationships and their dynamics in a single latent hierarchy over time. Strauss & Holekamp (in press).