Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Convert a directory structure into a JSON format. This package lets you recursively traverse a directory and convert its contents into a JSON object, making it easier to import code base from file systems into large language models.
This package provides methods for (auto)covariance/correlation function estimation in change point regression with stationary errors circumventing the pre-estimation of the underlying signal of the observations. Generic, first-order, (m+1)-gapped, difference-based autocovariance function estimator is based on M. Levine and I. Tecuapetla-Gómez (2023) <doi:10.48550/arXiv.1905.04578>. Bias-reducing, second-order, (m+1)-gapped, difference-based estimator is based on I. Tecuapetla-Gómez and A. Munk (2017) <doi:10.1111/sjos.12256>. Robust autocovariance estimator for change point regression with autoregressive errors is based on S. Chakar et al. (2017) <doi:10.3150/15-BEJ782>. It also includes a general projection-based method for covariance matrix estimation.
DEploid (Zhu et.al. 2018 <doi:10.1093/bioinformatics/btx530>) is designed for deconvoluting mixed genomes with unknown proportions. Traditional phasing programs are limited to diploid organisms. Our method modifies Li and Stephenâ s algorithm with Markov chain Monte Carlo (MCMC) approaches, and builds a generic framework that allows haloptype searches in a multiple infection setting. This package provides R functions to support data analysis and results interpretation.
Implementation of double machine learning (DML) algorithms in R, based on Emmenegger and Buehlmann (2021) "Regularizing Double Machine Learning in Partially Linear Endogenous Models" <arXiv:2101.12525> and Emmenegger and Buehlmann (2021) <arXiv:2108.13657> "Double Machine Learning for Partially Linear Mixed-Effects Models with Repeated Measurements". First part: our goal is to perform inference for the linear parameter in partially linear models with confounding variables. The standard DML estimator of the linear parameter has a two-stage least squares interpretation, which can lead to a large variance and overwide confidence intervals. We apply regularization to reduce the variance of the estimator, which produces narrower confidence intervals that are approximately valid. Nuisance terms can be flexibly estimated with machine learning algorithms. Second part: our goal is to estimate and perform inference for the linear coefficient in a partially linear mixed-effects model with DML. Machine learning algorithms allows us to incorporate more complex interaction structures and high-dimensional variables.
Simulates demic diffusion building on models previously developed for the expansion of Neolithic and other food-producing economies during the Holocene (Fort et al. (2012) <doi:10.7183/0002-7316.77.2.203>, Souza et al. (2021) <doi:10.1098/rsif.2021.0499>). Growth and emigration are modelled as density-dependent processes using logistic growth and an asymptotic threshold model. Environmental and terrain layers, which can change over time, affect carrying capacity, growth and mobility. Multiple centres of origin with their respective starting times can be specified.
Predict future values with hybrid combinations of Pattern Sequence based Forecasting (PSF), Autoregressive Integrated Moving Average (ARIMA), Empirical Mode Decomposition (EMD) and Ensemble Empirical Mode Decomposition (EEMD) methods based hybrid methods.
Detrend fluorescence microscopy image series for fluorescence fluctuation and correlation spectroscopy ('FCS and FFS') analysis. This package contains functionality published in a 2016 paper <doi:10.1093/bioinformatics/btx434> but it has been extended since then with the Robin Hood algorithm and thus contains unpublished work.
This package performs drug demand forecasting by modeling drug dispensing data while taking into account predicted enrollment and treatment discontinuation dates. The gap time between randomization and the first drug dispensing visit is modeled using interval-censored exponential, Weibull, log-logistic, or log-normal distributions (Anderson-Bergman (2017) <doi:10.18637/jss.v081.i12>). The number of skipped visits is modeled using Poisson, zero-inflated Poisson, or negative binomial distributions (Zeileis, Kleiber & Jackman (2008) <doi:10.18637/jss.v027.i08>). The gap time between two consecutive drug dispensing visits given the number of skipped visits is modeled using linear regression based on least squares or least absolute deviations (Birkes & Dodge (1993, ISBN:0-471-56881-3)). The number of dispensed doses is modeled using linear or linear mixed-effects models (McCulloch & Searle (2001, ISBN:0-471-19364-X)).
This package provides a systematic biology tool was developed to repurpose drugs via a subpathway crosstalk network. The operation modes include 1) calculating centrality scores of SPs in the context of gene expression data to reflect the influence of SP crosstalk, 2) evaluating drug-disease reverse association based on disease- and drug-induced SPs weighted by the SP crosstalk, 3) identifying cancer candidate drugs through perturbation analysis. There are also several functions used to visualize the results.
This package provides a single function that supports the installation of all packages belonging to the dartRverse'. The dartRverse is a set of packages that work together to analyse SNP (single nuclear polymorphism) data. All packages aim to have a similar look and feel and are based on the same type of data structure ('genlight'), with additional metadata for loci and individuals (samples). For more information visit the GitHub pages <https://github.com/green-striped-gecko/dartRverse>.
Estimators of Difference-in-Differences based on de Chaisemartin and D'Haultfoeuille.
This package provides a domain-specific language for specifying translating recursions into dynamic-programming algorithms. See <https://en.wikipedia.org/wiki/Dynamic_programming> for a description of dynamic programming.
This hosts the findRFM function which generates RFM scores on a 1-5 point scale for customer transaction data. The function consumes a data frame with Transaction Number, Customer ID, Date of Purchase (in date format) and Amount of Purchase as the attributes. The function returns a data frame with RFM data for the sales information.
This package performs reference based multiple imputation of recurrent event data based on a negative binomial regression model, as described by Keene et al (2014) <doi:10.1002/pst.1624>.
Access the Google Data Commons API V2 <https://docs.datacommons.org/api/rest/v2/>. Data Commons provides programmatic access to statistical and demographic data from dozens of sources organized in a knowledge graph.
Manipulates date ('Date'), date time ('POSIXct') and time ('hms') vectors. Date/times are considered discrete and are floored whenever encountered. Times are wrapped and time zones are maintained unless explicitly altered by the user.
Solves ordinary and delay differential equations, where the objective function is written in either R or C. Suitable only for non-stiff equations, the solver uses a Dormand-Prince method that allows interpolation of the solution at any point. This approach is as described by Hairer, Norsett and Wanner (1993) <ISBN:3540604529>. Support is also included for iterating difference equations.
Smooth testing of goodness of fit. These tests are data driven (alternative hypothesis is dynamically selected based on data). In this package you will find various tests for exponent, Gaussian, Gumbel and uniform distribution.
Datasets and functions to accompany the book Analisis de datos con el programa estadistico R: una introduccion aplicada by Salas-Eljatib (2021, ISBN: 9789566086109). The package helps carry out data management, exploratory analyses, and model fitting.
Piecewise linear segmentation of ordered data by a dynamic programming algorithm. The algorithm was developed for time series data, e.g. growth curves, and for genome-wide read-count data from next generation sequencing, but is broadly applicable. Generic implementations of dynamic programming routines allow to scan for optimal segmentation parameters and test custom segmentation criteria ("scoring functions").
For checking the dataset from EDC(Electronic Data Capture) in clinical trials. dmtools reshape your dataset in a tidy view and check events. You can reshape the dataset and choose your target to check, for example, the laboratory reference range.
The load estimation method is based on a general factor model to solve the estimates of load and specific variance. The philosophy of the package is described in Guangbao Guo. (2022). <doi:10.1007/s00180-022-01270-z>.
An extension to the DPQ package with computations for DPQ (Density (pdf), Probability (cdf) and Quantile) functions, where the functions here partly use the Rmpfr package and hence the underlying MPFR and GMP C libraries.
Compares distributions with one another in terms of their fit to each sample in a dataset that contains multiple samples, as described in Joo, Aguinis, and Bradley (in press). Users can examine the fit of seven distributions per sample: pure power law, lognormal, exponential, power law with an exponential cutoff, normal, Poisson, and Weibull. Automation features allow the user to compare all distributions for all samples with a single command line, which creates a separate row containing results for each sample until the entire dataset has been analyzed.