Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides a collection of functions for directional data (including massive data, with millions of observations) analysis. Hypothesis testing, discriminant and regression analysis, MLE of distributions and more are included. The standard textbook for such data is the "Directional Statistics" by Mardia, K. V. and Jupp, P. E. (2000). Other references include: a) Paine J.P., Preston S.P., Tsagris M. and Wood A.T.A. (2018). "An elliptically symmetric angular Gaussian distribution". Statistics and Computing 28(3): 689-697. <doi:10.1007/s11222-017-9756-4>. b) Tsagris M. and Alenazi A. (2019). "Comparison of discriminant analysis methods on the sphere". Communications in Statistics: Case Studies, Data Analysis and Applications 5(4):467--491. <doi:10.1080/23737484.2019.1684854>. c) Paine J.P., Preston S.P., Tsagris M. and Wood A.T.A. (2020). "Spherical regression models with general covariates and anisotropic errors". Statistics and Computing 30(1): 153--165. <doi:10.1007/s11222-019-09872-2>. d) Tsagris M. and Alenazi A. (2024). "An investigation of hypothesis testing procedures for circular and spherical mean vectors". Communications in Statistics-Simulation and Computation, 53(3): 1387--1408. <doi:10.1080/03610918.2022.2045499>. e) Yu Z. and Huang X. (2024). A new parameterization for elliptically symmetric angular Gaussian distributions of arbitrary dimension. Electronic Journal of Statistics, 18(1): 301--334. <doi:10.1214/23-EJS2210>. f) Tsagris M. and Alzeley O. (2025). "Circular and spherical projected Cauchy distributions: A Novel Framework for Circular and Directional Data Modeling". Australian & New Zealand Journal of Statistics, 67(1): 77--103. <doi:10.1111/anzs.12434>. g) Tsagris M., Papastamoulis P. and Kato S. (2025). "Directional data analysis: spherical Cauchy or Poisson kernel-based distribution". Statistics and Computing, 35:51. <doi:10.1007/s11222-025-10583-0>.
This package provides a big-data-friendly and memory-efficient difference-in-differences estimator for staggered (and non-staggered) treatment contexts.
Add a "Did You Mean" feature to the R interactive. With this package, error messages for misspelled input of variable names or package names suggest what you really want to do in addition to notification of the mistake.
This package provides a set of pricing and expository functions that should be useful in teaching a course on financial derivatives.
DAGs With Omitted Objects Displayed (DAGWOOD) is a framework to help reveal key hidden assumptions in a causal DAG. This package provides an implementation of the DAGWOOD algorithm. Further description can be found in Haber et al (2022) <DOI:10.1016/j.annepidem.2022.01.001>.
Generates an RMarkdown data report with two components: a summary of an input dataset and a diff of the dataset relative to an old version.
Hidden Markov models (HMMs) are a formal foundation for making probabilistic models of linear sequence. They provide a conceptual toolkit for building complex models just by drawing an intuitive picture. They are at the heart of a diverse range of programs, including genefinding, profile searches, multiple sequence alignment and regulatory site identification. HMMs are the Legos of computational sequence analysis. In graph theory, a tree is an undirected graph in which any two vertices are connected by exactly one path, or equivalently a connected acyclic undirected graph. Tree represents the nodes connected by edges. It is a non-linear data structure. A poly-tree is simply a directed acyclic graph whose underlying undirected graph is a tree. The model proposed in this package is the same as an HMM but where the states are linked via a polytree structure rather than a simple path.
Manage your source code dependencies by decorating your existing R code with special, roxygen'-style comments.
Estimation of incidence and case fatality for a chronic disease, given partial information, using a multi-state model. Given data on age-specific mortality and either incidence or prevalence, Bayesian inference is used to estimate the posterior distributions of incidence, case fatality, and functions of these such as prevalence. The methods are described in Jackson et al. (2023) <doi:10.1093/jrsssa/qnac015>.
Calculate adjusted means and proportions of a variable by groups defined by another variable by direct standardisation, standardised to the structure of the dataset.
Collects libphonenumber jars required for the dialr package.
This package provides methods to estimate dynamic treatment regimes using Interactive Q-Learning, Q-Learning, weighted learning, and value-search methods based on Augmented Inverse Probability Weighted Estimators and Inverse Probability Weighted Estimators. Dynamic Treatment Regimes: Statistical Methods for Precision Medicine, Tsiatis, A. A., Davidian, M. D., Holloway, S. T., and Laber, E. B., Chapman & Hall/CRC Press, 2020, ISBN:978-1-4987-6977-8.
This package provides functions to pipe data from R to DataGraph', a graphing and analysis application for mac OS. Create a live connection using either .dtable or .dtbin files that can be read by DataGraph'. Can save a data frame, collection of data frames and sequences of data frames and individual vectors. For more information see <https://community.visualdatatools.com/datagraph/knowledge-base/r-package/>.
Automatic differentiation is achieved by using dual numbers without providing hand-coded gradient functions. The output value of a mathematical function is returned with the values of its exact first derivative (or gradient). For more details see Baydin, Pearlmutter, Radul, and Siskind (2018) <https://jmlr.org/papers/volume18/17-468/17-468.pdf>.
Programmatic interface to the Daymet web services (<http://daymet.ornl.gov>). Allows for easy downloads of Daymet climate data directly to your R workspace or your computer. Routines for both single pixel data downloads and gridded (netCDF) data are provided.
This package provides tools for detecting XOR-like patterns in variable pairs in two-class data sets. Includes visualizations for pattern exploration and reporting capabilities with both text and HTML output formats.
Probability generating function, formulae for the probabilities (discrete density) and random generation for discrete stable random variables.
This package contains functions for the DivE estimator <doi:10.1371/journal.pcbi.1003646>. The DivE estimator is a heuristic approach to estimate the number of classes or the number of species (species richness) in a population.
Extends package distr by functionals, distances, and conditional distributions.
We consider a set of sample counts obtained by sampling arbitrary fractions of a finite volume containing an homogeneously dispersed population of identical objects. This package implements a Bayesian derivation of the posterior probability distribution of the population size using a binomial likelihood and non-conjugate, discrete uniform priors under sampling with or without replacement. This can be used for a variety of statistical problems involving absolute quantification under uncertainty. See Comoglio et al. (2013) <doi:10.1371/journal.pone.0074388>.
This package provides a non-drawing graphic device for benchmarking purpose. In order to properly benchmark graphic drawing code it is necessary to factor out the device implementation itself so that results are not related to the specific graphics device used during benchmarking. The devoid package implements a graphic device that accepts all the required calls from R's graphic engine but performs no action. Apart from benchmarking it is unlikely that this device has any practical use.
Dynamic model averaging for binary and continuous outcomes.
This package provides a wrapper for Google's diff-match-patch library. It provides basic tools for computing diffs, finding fuzzy matches, and constructing / applying patches to strings.
Compute degree days from daily min and max temperatures for modeling plant and insect development.