Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides a set of functions to estimate the controlled direct effect of treatment fixing a potential mediator to a specific value. Implements the sequential g-estimation estimator described in Vansteelandt (2009) <doi:10.1097/EDE.0b013e3181b6f4c9> and Acharya, Blackwell, and Sen (2016) <doi:10.1017/S0003055416000216> and the telescope matching estimator described in Blackwell and Strezhnev (2020) <doi:10.1111/rssa.12759>.
Several tools for handling block-matrix diagonals and similar constructs are implemented. Block-diagonal matrices can be extracted or removed using two small functions implemented here. In addition, non-square matrices are supported. Block diagonal matrices occur when two dimensions of a data set are combined along one edge of a matrix. For example, trade-flow data in the decompr and gvc packages have each country-industry combination occur along both edges of the matrix.
Implementation of selected Tidyverse functions within DataSHIELD', an open-source federated analysis solution in R. Currently, DataSHIELD contains very limited tools for data manipulation, so the aim of this package is to improve the researcher experience by implementing essential functions for data manipulation, including subsetting, filtering, grouping, and renaming variables. This is the serverside package which should be installed on the server holding the data, and is used in conjuncture with the clientside package dsTidyverseClient which is installed in the local R environment of the analyst. For more information, see <https://tidyverse.org/> and <https://datashield.org/>.
This package performs detection of Differential Item Functioning using the method DIFboost as proposed by Schauberger and Tutz (2016) <doi:10.1111/bmsp.12060>.
This package provides tools to fit sample selection models in case of discrete response variables, through a parametric formulation which represents a natural extension of the well-known Heckman selection model are provided in the package. The response variable can be of Bernoulli, Poisson or Negative Binomial type. The sample selection mechanism allows to choose among a Normal, Logistic or Gumbel distribution.
Fit a mixture of Discrete Laplace distributions using plain numerical optimisation. This package has similar applications as the disclapmix package that uses an EM algorithm.
It contains functions to apply blockmodeling of signed (positive and negative weights are assigned to the links), one-mode and valued one-mode and two-mode (two sets of nodes are considered, e.g. employees and organizations) networks (Brusco et al. (2019) <doi:10.1111/bmsp.12192>).
Automated data exploration process for analytic tasks and predictive modeling, so that users could focus on understanding data and extracting insights. The package scans and analyzes each variable, and visualizes them with typical graphical techniques. Common data processing methods are also available to treat and format data.
Create and evaluate probability distribution objects from a variety of families or define custom distributions. Automatically compute distributional properties, even when they have not been specified. This package supports statistical modeling and simulations, and forms the core of the probaverse suite of R packages.
This package provides a suite of loon related packages providing data analytic tools for Direct Interactive Visual Exploration in R ('diveR'). These tools work with and complement those of the tidyverse suite, extending the grammar of ggplot2 to become a grammar of interactive graphics. The suite provides many visual tools designed for moderately (100s of variables) high dimensional data analysis, through zenplots and novel tools in loon', and extends the ggplot2 grammar to provide parallel coordinates, Andrews plots, and arbitrary glyphs through ggmulti'. The diveR package gathers together and installs all these related packages in a single step.
We present DRaWR, a network-based method for ranking genes or properties related to a given gene set. Such related genes or properties are identified from among the nodes of a large, heterogeneous network of biological information. Our method involves a random walk with restarts, performed on an initial network with multiple node and edge types, preserving more of the original, specific property information than current methods that operate on homogeneous networks. In this first stage of our algorithm, we find the properties that are the most relevant to the given gene set and extract a subnetwork of the original network, comprising only the relevant properties. We then rerank genes by their similarity to the given gene set, based on a second random walk with restarts, performed on the above subnetwork.
The DWD provides gridded radar data for Germany in binary format. dwdradar reads these files and enables a fast conversion into numerical format.
Statistical modelling and forecasting in claims reserving in non-life insurance under the Double Chain Ladder framework by Martinez-Miranda, Nielsen and Verrall (2012).
It is used to identify dysregulated pathways based on a pre-ranked gene pair list. A fast algorithm is used to make the computation really fast. The data in package DysPIAData is needed.
This package provides a set of functions to perform Raju, van der Linden and Fleer's (1995, <doi:10.1177/014662169501900405>) Differential Functioning of Items and Tests (DFIT) analyses. It includes functions to use the Monte Carlo Item Parameter Replication approach (Oshima, Raju, & Nanda, 2006, <doi:10.1111/j.1745-3984.2006.00001.x>) for obtaining the associated statistical significance tests cut-off points. They may also be used for a priori and post-hoc power calculations (Cervantes, 2017, <doi:10.18637/jss.v076.i05>).
An R interface to the Free Dictionary API <https://dictionaryapi.dev/>, <https://github.com/meetDeveloper/freeDictionaryAPI>. Retrieve dictionary definitions for English words, as well as additional information including phonetics, part of speech, origins, audio pronunciation, example usage, synonyms and antonyms, returned in tidy format for ease of use.
Data frame, tibble, or tbl objects are converted to data package objects using specific metadata labels (name, version, title, homepage, description). A data package object ('dpkg') can be written to disk as a parquet file or released to a GitHub repository. Data package objects can be read into R from online repositories and downloaded files are cached locally across R sessions.
Allows humanitarian community, academia, media, government, and non-governmental organizations to utilize the data collected by the Displacement Tracking Matrix (<https://dtm.iom.int>), a unit in the International Organization for Migration. This also provides non-sensitive Internally Displaced Person figures, aggregated at the country, Admin 1 (states, provinces, or equivalent), and Admin 2 (smaller administrative areas) levels.
Model fitting and evaluation tools for double generalized linear models (DGLMs). This class of models uses one generalized linear model (GLM) to fit the specified response and a second GLM to fit the deviance of the first model.
Efficient methods for computing distance covariance and relevant statistics. See Székely et al.(2007) <doi:10.1214/009053607000000505>; Székely and Rizzo (2013) <doi:10.1016/j.jmva.2013.02.012>; Székely and Rizzo (2014) <doi:10.1214/14-AOS1255>; Huo and Székely (2016) <doi:10.1080/00401706.2015.1054435>.
Enables the user to build a citation network/graph from bibliographic data and, based on modularity and heterocitation metrics, assess the degree of awareness/cross-fertilization between two corpora/communities. This toolset is optimized for Scopus data.
Various functions to import, verify, process and plot high-resolution dendrometer data using daily and stem-cycle approaches as described in Deslauriers et al, 2007 <doi:10.1016/j.dendro.2007.05.003>. For more details about the package please see: Van der Maaten et al. 2016 <doi:10.1016/j.dendro.2016.06.001>.
This package provides a system for combining two diagnostic tests using various approaches that include statistical and machine-learning-based methodologies. These approaches are divided into four groups: linear combination methods, non-linear combination methods, mathematical operators, and machine learning algorithms. See the <https://biotools.erciyes.edu.tr/dtComb/> website for more information, documentation, and examples.
Allows for the specification of semi-structured deep distributional regression models which are fitted in a neural network as proposed by Ruegamer et al. (2023) <doi:10.18637/jss.v105.i02>. Predictors can be modeled using structured (penalized) linear effects, structured non-linear effects or using an unstructured deep network model.