Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Time series analysis of network connectivity. Detects and visualizes change points between networks. Methods included in the package are discussed in depth in Baek, C., Gates, K. M., Leinwand, B., Pipiras, V. (2021) "Two sample tests for high-dimensional auto-covariances" <doi:10.1016/j.csda.2020.107067> and Baek, C., Gampe, M., Leinwand B., Lindquist K., Hopfinger J. and Gates K. (2023) â Detecting functional connectivity changes in fMRI dataâ <doi:10.1007/s11336-023-09908-7>.
This package provides an interactive viewer for data.frame and tibble objects using shiny <https://shiny.posit.co/> and DT <https://rstudio.github.io/DT/>. It supports complex filtering, column selection, and automatic generation of reproducible dplyr <https://dplyr.tidyverse.org/> code for data manipulation. The package is designed for ease of use in data exploration and reporting workflows.
This package provides tools to apply Ensemble Empirical Mode Decomposition (EEMD) for cyclostratigraphy purposes. Mainly: a new algorithm, extricate, that performs EEMD in seconds, a linear interpolation algorithm using the greatest rational common divisor of depth or time, different algorithms to compute instantaneous amplitude, frequency and ratios of frequencies, and functions to verify and visualise the outputs. The functions were developed during the CRASH project (Checking the Reproducibility of Astrochronology in the Hauterivian). When using for publication please cite Wouters, S., Crucifix, M., Sinnesael, M., Da Silva, A.C., Zeeden, C., Zivanovic, M., Boulvain, F., Devleeschouwer, X., 2022, "A decomposition approach to cyclostratigraphic signal processing". Earth-Science Reviews 225 (103894). <doi:10.1016/j.earscirev.2021.103894>.
Allows you to define rules which can be used to verify a given dataset. The package acts as a thin wrapper around more powerful data packages such as dplyr', data.table', arrow', and DBI ('SQL'), which do the heavy lifting.
Distributed Online Covariance Matrix Tests Docovt is a powerful tool designed to efficiently process and analyze distributed datasets. It enables users to perform covariance matrix tests in an online, distributed manner, making it highly suitable for large-scale data analysis. By leveraging advanced computational techniques, Docovt ensures robust and scalable solutions for statistical analysis, particularly in scenarios where data is dispersed across multiple nodes or sources. This package is ideal for researchers and practitioners working with high-dimensional data, providing a flexible and efficient framework for covariance matrix estimation and hypothesis testing. The philosophy of Docovt is described in Guo G.(2025) <doi:10.1016/j.physa.2024.130308>.
This package provides various tools for analysing density profiles obtained by resistance drilling. It can load individual or multiple files and trim the starting and ending part of each density profile. Tools are also provided to trim profiles manually, to remove the trend from measurements using several methods, to plot the profiles and to detect tree rings automatically. Written with a focus on forestry use of resistance drilling in standing trees.
This package implements survival proximity score matching in multi-state survival models. Includes tools for simulating survival data and estimating transition-specific coxph models with frailty terms. The primary methodological work on multistate censored data modeling using propensity score matching has been published by Bhattacharjee et al.(2024) <doi:10.1038/s41598-024-54149-y>.
This package implements S4 classes for probability models based on packages distr and distrEx'.
Summarizes data frames by calculating various statistics including central tendency, dispersion, shape, and normality diagnostics. Handles numeric, character, and factor columns with NA-aware computations.
This package provides density, distribution function, quantile function and random generation for the split normal and split-t distributions, and computes their mean, variance, skewness and kurtosis for the two distributions (Li, F, Villani, M. and Kohn, R. (2010) <doi:10.1016/j.jspi.2010.04.031>).
This package provides functions for computing the density, distribution, and random generation of the Decision Diffusion model (DDM), a widely used cognitive model for analysing choice and response time data. The package allows model specification, including the ability to fix, constrain, or vary parameters across experimental conditions. While it does not include a built-in optimiser, it supports likelihood evaluation and can be integrated with external tools for parameter estimation. Functions for simulating synthetic datasets are also provided. This package is intended for researchers modelling speeded decision-making in behavioural and cognitive experiments. For more information, see Voss, Rothermund, and Voss (2004) <doi:10.3758/BF03196893>, Voss and Voss (2007) <doi:10.3758/BF03192967>, and Ratcliff and McKoon (2008) <doi:10.1162/neco.2008.12-06-420>.
This package contains functions for the DivE estimator <doi:10.1371/journal.pcbi.1003646>. The DivE estimator is a heuristic approach to estimate the number of classes or the number of species (species richness) in a population.
The gap statistic approach is extended to estimate the number of clusters for categorical response format data. This approach and accompanying software is designed to be used with the output of any clustering algorithm and with distances specifically designed for categorical (i.e. multiple choice) or ordinal survey response data.
This package provides tools for converting and imputing date values to the ISO 8601 standard format and for reconciling differences between two versions of a data set. The package automatically detects date patterns within data frame columns and converts them to consistent ISO-formatted dates, with optional imputation of missing day or month components based on user-defined rules. It also includes functionality to identify inserted, deleted, and updated records, as well as column- and value-level changes, when comparing old and new versions of a data frame. Only one date format may be applied within a single column.
Tissue-specific enrichment analysis to assess lists of candidate genes or RNA-Seq expression profiles. Pei G., Dai Y., Zhao Z. Jia P. (2019) deTS: Tissue-Specific Enrichment Analysis to decode tissue specificity. Bioinformatics, In submission.
This package provides documentation in form of a common vignette to packages distr', distrEx', distrMod', distrSim', distrTEst', distrTeach', and distrEllipse'.
Local linear hazard estimator and its multiplicatively bias correction, including three bandwidth selection methods: best one-sided cross-validation, double one-sided cross-validation, and standard cross-validation.
Estimation of Difference-in-Differences (DiD) estimators from de Chaisemartin et al. (2025) <doi:10.48550/arXiv.2405.04465> in Heterogeneous Adoption Designs with Quasi Untreated Groups.
This package produces SPSS- and SAS-like output for linear discriminant function analysis and canonical correlation analysis. The methods are described in Manly & Alberto (2017, ISBN:9781498728966), Rencher (2002, ISBN:0-471-41889-7), and Tabachnik & Fidell (2019, ISBN:9780134790541).
Simulates demic diffusion building on models previously developed for the expansion of Neolithic and other food-producing economies during the Holocene (Fort et al. (2012) <doi:10.7183/0002-7316.77.2.203>, Souza et al. (2021) <doi:10.1098/rsif.2021.0499>). Growth and emigration are modelled as density-dependent processes using logistic growth and an asymptotic threshold model. Environmental and terrain layers, which can change over time, affect carrying capacity, growth and mobility. Multiple centres of origin with their respective starting times can be specified.
Identifies code blocks that have a high level of similarity within a set of R files.
Discretization-based random sampling algorithm that is useful for a complex model in high dimension is implemented. The normalizing constant of a target distribution is not needed. Posterior summaries are compared with those by OpenBUGS'. The method is described: Wang and Lee (2014) <doi:10.1016/j.csda.2013.06.011> and exercised in Lee (2009) <http://hdl.handle.net/1993/21352>.
This package provides a Bayesian framework for parameter inference in differential equations. This approach offers a rigorous methodology for parameter inference as well as modeling the link between unobservable model states and parameters, and observable quantities. Provides templates for the DE model, the observation model and data likelihood, and the model parameters and their prior distributions. A Markov chain Monte Carlo (MCMC) procedure processes these inputs to estimate the posterior distributions of the parameters and any derived quantities, including the model trajectories. Further functionality is provided to facilitate MCMC diagnostics and the visualisation of the posterior distributions of model parameters and trajectories.
Nonparametric estimator of the cumulative incidences of competing risks under double truncation. The estimator generalizes the Efron-Petrosian NPMLE (Non-Parametric Maximun Likelihood Estimator) to the competing risks setting. Efron, B. and Petrosian, V. (1999) <doi:10.2307/2669997>.