Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package performs emulation of dynamic simulators using Gaussian process via one-step ahead approach. The package implements a flexible framework for approximating time-dependent outputs from computationally expensive dynamic systems. It is specifically designed for nonlinear dynamic systems where full simulations may be costly. The underlying Gaussian process model accounts for temporal dependency through the one-step-ahead formulation, allowing for accurate emulation of complex dynamics. Hyperparameters are estimated via maximum likelihood. For methodological details, see Heo (2025, <doi:10.48550/arXiv.2503.20250>) for exact method, and Mohammadi, Challenor, and Goodfellow (2019, <doi:10.1016/j.csda.2019.05.006>) for Monte Carlo method.
Using the Theory of Belief Functions for evidence calculus. Basic probability assignments, or mass functions, can be defined on the subsets of a set of possible values and combined. A mass function can be extended to a larger frame. Marginalization, i.e. reduction to a smaller frame can also be done. These features can be combined to analyze small belief networks and take into account situations where information cannot be satisfactorily described by probability distributions.
This package provides a comprehensive approach for identifying and estimating change points in multivariate time series through various statistical methods. Implements the multiple change point detection methodology from Ryan & Killick (2023) <doi:10.1080/00401706.2023.2183261> and a novel estimation methodology from Fotopoulos et al. (2023) <doi:10.1007/s00362-023-01495-0> generalized to fit the detection methodologies. Performs both detection and estimation of change points, providing visualization and summary information of the estimation process for each detected change point.
Companion to the book "An Introduction to Clustering with R" by P. Giordani, M.B. Ferraro and F. Martella (Springer, Singapore, 2020). The datasets are used in some case studies throughout the text.
An RStudio addin for teaching and learning data manipulation using the dplyr package. You can learn each steps of data manipulation by clicking your mouse without coding. You can get resultant data (as a tibble') and the code for data manipulation.
Summarizes data frames by calculating various statistics including central tendency, dispersion, shape, and normality diagnostics. Handles numeric, character, and factor columns with NA-aware computations.
Distances on dual-weighted directed graphs using priority-queue shortest paths (Padgham (2019) <doi:10.32866/6945>). Weighted directed graphs have weights from A to B which may differ from those from B to A. Dual-weighted directed graphs have two sets of such weights. A canonical example is a street network to be used for routing in which routes are calculated by weighting distances according to the type of way and mode of transport, yet lengths of routes must be calculated from direct distances.
Pulls together a collection of datasets from Miguel de Carvalho research articles and books. Including, for example: - de Carvalho (2012) <doi:10.1016/j.jspi.2011.08.016>; - de Carvalho et al (2012) <doi:10.1080/03610926.2012.709905>; - de Carvalho et al (2012) <doi:10.1016/j.econlet.2011.09.007>); - de Carvalho and Davison (2014) <doi:10.1080/01621459.2013.872651>; - de Carvalho and Rua (2017) <doi:10.1016/j.ijforecast.2015.09.004>; - de Carvalho et al (2023) <doi:10.1002/sta4.560>; - de Carvalho et al (2022) <doi:10.1007/s13253-021-00469-9>; - Palacios et al (2025) <doi:10.1214/24-BA1420>.
Diagnostic tools for auditing data analysis workflows built on data.table'. Provides functions to validate join operations, compare data.tables, filter with diagnostic output, summarize data quality, check primary keys and variable relationships, and diagnose string columns. Designed to help analysts understand and document data transformations.
Similarity of dissolution profiles is assessed using the similarity factor f2 according to the EMA guideline (European Medicines Agency 2010) "On the investigation of bioequivalence". Dissolution profiles are regarded as similar if the f2 value is between 50 and 100. For the applicability of the similarity factor f2, the variability between profiles needs to be within certain limits. Often, this constraint is violated. One possibility in this situation is to resample the measured profiles in order to obtain a bootstrap estimate of f2 (Shah et al. (1998) <doi:10.1023/A:1011976615750>). Other alternatives are the model-independent non-parametric multivariate confidence region (MCR) procedure (Tsong et al. (1996) <doi:10.1177/009286159603000427>) or the T2-test for equivalence procedure (Hoffelder (2016) <https://www.ecv.de/suse_item.php?suseId=Z|pi|8430>). Functions for estimation of f1, f2, bootstrap f2, MCR / T2-test for equivalence procedure are implemented.
Deconvolving cell types from high-throughput gene profiling data. For more information on dtangle see Hunt et al. (2019) <doi:10.1093/bioinformatics/bty926>.
This package provides functions for comparing two data.frames against each other. The core functionality is to provide a detailed breakdown of any differences between two data.frames as well as providing utility functions to help narrow down the source of problems and differences.
While it has been well established that drugs affect and help patients differently, personalized drug response predictions remain challenging. Solutions based on single omics measurements have been proposed, and networks provide means to incorporate molecular interactions into reasoning. However, how to integrate the wealth of information contained in multiple omics layers still poses a complex problem. We present a novel network analysis pipeline, DrDimont, Drug response prediction from Differential analysis of multi-omics networks. It allows for comparative conclusions between two conditions and translates them into differential drug response predictions. DrDimont focuses on molecular interactions. It establishes condition-specific networks from correlation within an omics layer that are then reduced and combined into heterogeneous, multi-omics molecular networks. A novel semi-local, path-based integration step ensures integrative conclusions. Differential predictions are derived from comparing the condition-specific integrated networks. DrDimont's predictions are explainable, i.e., molecular differences that are the source of high differential drug scores can be retrieved. Our proposed pipeline leverages multi-omics data for differential predictions, e.g. on drug response, and includes prior information on interactions. The case study presented in the vignette uses data published by Krug (2020) <doi:10.1016/j.cell.2020.10.036>. The package license applies only to the software and explicitly not to the included data.
This package provides a suite of tools to help modelers and decision-makers effectively interpret and communicate decision risk when evaluating multiple policy options. It uses model outputs from uncertainty analysis for baseline scenarios and policy alternatives to generate visual representations of uncertainty and quantitative measures for assessing associated risks. For more details see Wiggins and colleagues (2025) <doi:10.1371/journal.pone.0332522> and <https://dut.ihe.ca/>.
Flexibly convert data between long and wide format using just two functions: reshape_toLong() and reshape_toWide().
Joint DNA-based disaster victim identification (DVI), as described in Vigeland and Egeland (2021) <doi:10.21203/rs.3.rs-296414/v1>. Identification is performed by optimising the joint likelihood of all victim samples and reference individuals. Individual identification probabilities, conditional on all available information, are derived from the joint solution in the form of posterior pairing probabilities. dvir is part of the pedsuite collection of packages for pedigree analysis.
An R interface to the codediff JavaScript library (a copy of which is included in the package, see <https://github.com/danvk/codediff.js> for information). Allows for visualization of the difference between 2 files, usually text files or R scripts, in a browser.
Estimation of DIFferential COexpressed NETworks using diverse and user metrics. This package is basically used for three functions related to the estimation of differential coexpression. First, to estimate differential coexpression where the coexpression is estimated, by default, by Spearman correlation. For this, a metric to compare two correlation distributions is needed. The package includes 6 metrics. Some of them needs a threshold. A new metric can also be specified as a user function with specific parameters (see difconet.run). The significance is be estimated by permutations. Second, to generate datasets with controlled differential correlation data. This is done by either adding noise, or adding specific correlation structure. Third, to show the results of differential correlation analyses. Please see <http://bioinformatica.mty.itesm.mx/difconet> for further information.
Creating dendrochronological networks based on the similarity between tree-ring series or chronologies. The package includes various functions to compare tree-ring curves building upon the dplR package. The networks can be used to visualise and understand the relations between tree-ring curves. These networks are also very useful to estimate the provenance of wood as described in Visser (2021) <DOI:10.5334/jcaa.79> or wood-use within a structure/context/site as described in Visser and Vorst (2022) <DOI:10.1163/27723194-bja10014>.
This package provides functionality that assists in tabular description and statistical comparison of data.
This package provides a GUI to solve dynamic biplots and classical biplot. Try matrices of 2-way and 3-way. The GUI can be run in multiple languages.
This package implements survival proximity score matching in multi-state survival models. Includes tools for simulating survival data and estimating transition-specific coxph models with frailty terms. The primary methodological work on multistate censored data modeling using propensity score matching has been published by Bhattacharjee et al.(2024) <doi:10.1038/s41598-024-54149-y>.
Decompose a time series into seasonal, trend and irregular components using transformations to amplitude-frequency domain.
Builds interactive d3.js hierarchical visualisation easily. D3partitionR makes it easy to build and customize sunburst, circle treemap, treemap, partition chart, ...