Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Estimates latent variables of public opinion cross-nationally and over time from sparse and incomparable survey data. DCPO uses a population-level graded response model with country-specific item bias terms. Sampling is conducted with Stan'. References: Solt (2020) <doi:10.31235/osf.io/d5n9p>.
This package provides a d-statistic tests the null hypothesis of no treatment effect in a matched, nonrandomized study of the effects caused by treatments. A d-statistic focuses on subsets of matched pairs that demonstrate insensitivity to unmeasured bias in such an observational study, correcting for double-use of the data by conditional inference. This conditional inference can, in favorable circumstances, substantially increase the power of a sensitivity analysis (Rosenbaum (2010) <doi:10.1007/978-1-4419-1213-8_14>). There are two examples, one concerning unemployment from Lalive et al. (2006) <doi:10.1111/j.1467-937X.2006.00406.x>, the other concerning smoking and periodontal disease from Rosenbaum (2017) <doi:10.1214/17-STS621>.
Discriminant Adaptive Nearest Neighbor Classification is a variation of k nearest neighbors where the shape of the neighborhood is data driven. This package implements dann and sub_dann from Hastie (1996) <https://web.stanford.edu/~hastie/Papers/dann_IEEE.pdf>.
This package provides a collection of tools that support data diagnosis, exploration, and transformation. Data diagnostics provides information and visualization of missing values, outliers, and unique and negative values to help you understand the distribution and quality of your data. Data exploration provides information and visualization of the descriptive statistics of univariate variables, normality tests and outliers, correlation of two variables, and the relationship between the target variable and predictor. Data transformation supports binning for categorizing continuous variables, imputes missing values and outliers, and resolves skewness. And it creates automated reports that support these three tasks.
This package provides a comprehensive toolkit for analyzing microscopy data output from QuPath software. Provides functionality for automated data processing, metadata extraction, and statistical analysis of imaging results. The methodology implemented in this package is based on Labrosse et al. (2024) <doi:10.1016/j.xpro.2024.103274> "Protocol for quantifying drug sensitivity in 3D patient-derived ovarian cancer models", which describes the complete workflow for drug sensitivity analysis in patient-derived cancer models.
Extracts colonisation and branching times of island species to be used for analysis in the R package DAISIE'. It uses phylogenetic and endemicity data to extract the separate island colonists and store them.
Motifs within biological sequences show a significant role. This package utilizes a user-defined threshold value (window size and similarity) to create consensus segments or motifs through local alignment of dynamic programming with gap and it calculates the frequency of each identified motif, offering a detailed view of their prevalence within the dataset. It allows for thorough exploration and understanding of sequence patterns and their biological importance.
This package provides programmatic access to the Dark Sky API <https://darksky.net/dev/docs>, which provides current or historical global weather conditions.
This package performs Diallel Analysis with R using Griffing's and Hayman's approaches. Four different Methods (1: Method-I (Parents + F1's + reciprocals); 2: Method-II (Parents and one set of F1's); 3: Method-III (One set of F1's and reciprocals); 4: Method-IV (One set of F1's only)) and two Models (1: Fixed Effects Model; 2: Random Effects Model) can be applied using Griffing's approach.
Efficiently creates, manipulates, and subsets "dist" objects, commonly used in cluster analysis. Designed to minimise unnecessary conversions and computational overhead while enabling seamless interaction with distance matrices.
This package provides a set of functions to quantify the relationship between development rate and temperature and to build phenological models. The package comprises a set of models and estimated parameters borrowed from a literature review in ectotherms. The methods and literature review are described in Rebaudo et al. (2018) <doi:10.1111/2041-210X.12935>, Rebaudo and Rabhi (2018) <doi:10.1111/eea.12693>, and Regnier et al. (2021) <doi:10.1093/ee/nvab115>. An example can be found in Rebaudo et al. (2017) <doi:10.1007/s13355-017-0480-5>.
Metrics of difference for comparing pairs of variables or pairs of maps representing real or categorical variables at original and multiple resolutions.
Gives you the ability to use arbitrary Docker images (including custom ones) to process Rmarkdown code chunks.
This dataset includes Background and Pathway data used in package DysPIA'.
This package provides methods for reading, displaying, processing and writing files originally arranged for the DSSAT-CSM fixed width format. The DSSAT-CSM cropping system model is described at J.W. Jones, G. Hoogenboomb, C.H. Porter, K.J. Boote, W.D. Batchelor, L.A. Hunt, P.W. Wilkens, U. Singh, A.J. Gijsman, J.T. Ritchie (2003) <doi:10.1016/S1161-0301(02)00107-7>.
For checking the dataset from EDC(Electronic Data Capture) in clinical trials. dmtools reshape your dataset in a tidy view and check events. You can reshape the dataset and choose your target to check, for example, the laboratory reference range.
This package performs differential network analysis to infer disease specific gene networks.
An implementation of Dcifer (Distance for complex infections: fast estimation of relatedness), an identity by descent (IBD) based method to calculate genetic relatedness between polyclonal infections from biallelic and multiallelic data. The package includes functions that format and preprocess the data, implement the method, and visualize the results. Gerlovina et al. (2022) <doi:10.1093/genetics/iyac126>.
This package provides a collection of functions to perform Detrended Fluctuation Analysis (DFA) and Detrended Cross-Correlation Analysis (DCCA). This package implements the results presented in Prass, T.S. and Pumi, G. (2019). "On the behavior of the DFA and DCCA in trend-stationary processes" <arXiv:1910.10589>.
Calculates key indicators such as fertility rates (Total Fertility Rate (TFR), General Fertility Rate (GFR), and Age Specific Fertility Rate (ASFR)) using Demographic and Health Survey (DHS) women/individual data, childhood mortality probabilities and rates such as Neonatal Mortality Rate (NNMR), Post-neonatal Mortality Rate (PNNMR), Infant Mortality Rate (IMR), Child Mortality Rate (CMR), and Under-five Mortality Rate (U5MR), and adult mortality indicators such as the Age Specific Mortality Rate (ASMR), Age Adjusted Mortality Rate (AAMR), Age Specific Maternal Mortality Rate (ASMMR), Age Adjusted Maternal Mortality Rate (AAMMR), Age Specific Pregnancy Related Mortality Rate (ASPRMR), Age Adjusted Pregnancy Related Mortality Rate (AAPRMR), Maternal Mortality Ratio (MMR) and Pregnancy Related Mortality Ratio (PRMR). In addition to the indicators, the DHS.rates package estimates sampling errors indicators such as Standard Error (SE), Design Effect (DEFT), Relative Standard Error (RSE) and Confidence Interval (CI). The package is developed according to the DHS methodology of calculating the fertility indicators and the childhood mortality rates outlined in the "Guide to DHS Statistics" (Croft, Trevor N., Aileen M. J. Marshall, Courtney K. Allen, et al. 2018, <https://dhsprogram.com/Data/Guide-to-DHS-Statistics/index.cfm>) and the DHS methodology of estimating the sampling errors indicators outlined in the "DHS Sampling and Household Listing Manual" (ICF International 2012, <https://dhsprogram.com/pubs/pdf/DHSM4/DHS6_Sampling_Manual_Sept2012_DHSM4.pdf>).
An implementation of data analytic methods in R for analyses for data with ceiling/floor effects. The package currently includes functions for mean/variance estimation and mean comparison tests. Implemented methods are from Aitkin (1964) <doi:10.1007/BF02289723> and Liu & Wang (in prep).
Analyze and visualize the rhythmic behavior of animals using the degree of functional coupling (See Scheibe (1999) <doi:10.1076/brhm.30.2.216.1420>), compute and visualize harmonic power, actograms, average activity and diurnality index.
Spatial analyses involving binning require that every bin have the same area, but this is impossible using a rectangular grid laid over the Earth or over any projection of the Earth. Discrete global grids use hexagons, triangles, and diamonds to overcome this issue, overlaying the Earth with equally-sized bins. This package provides utilities for working with discrete global grids, along with utilities to aid in plotting such data.
This package provides a set of tools for relational and event analysis, including two- and one-mode network brokerage and structural measures, and helper functions optimized for relational event analysis with large datasets, including creating relational risk sets, computing network statistics, estimating relational event models, and simulating relational event sequences. For more information on relational event models, see Butts (2008) <doi:10.1111/j.1467-9531.2008.00203.x>, Lerner and Lomi (2020) <doi:10.1017/nws.2019.57>, Bianchi et al. (2024) <doi:10.1146/annurev-statistics-040722-060248>, and Butts et al. (2023) <doi:10.1017/nws.2023.9>. In terms of the structural measures in this package, see Leal (2025) <doi:10.1177/00491241251322517>, Burchard and Cornwell (2018) <doi:10.1016/j.socnet.2018.04.001>, and Fujimoto et al. (2018) <doi:10.1017/nws.2018.11>. This package was developed with support from the National Science Foundationâ s (NSF) Human Networks and Data Science Program (HNDS) under award number 2241536 (PI: Diego F. Leal). Any opinions, findings, and conclusions, or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the NSF.