Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
The functions defined in this program serve for implementing adaptive two-stage tests. Currently, four tests are included: Bauer and Koehne (1994), Lehmacher and Wassmer (1999), Vandemeulebroecke (2006), and the horizontal conditional error function. User-defined tests can also be implemented. Reference: Vandemeulebroecke, An investigation of two-stage tests, Statistica Sinica 2006.
Advanced sports performance analysis and modeling for activity data retrieved from Strava'. This package focuses on applying established sports science models and statistical methods to gain deeper insights into training load, performance prediction, recovery status, and identifying key performance factors, extending basic data analysis capabilities.
This package provides the conditional Nelson-Aalen and Aalen-Johansen estimators. The methods are based on Bladt & Furrer (2023), in preparation.
Utility functions to check data, variables and conditions for functions used in admiral and admiral extension packages. Additional utility helper functions to assist developers with maintaining documentation, testing and general upkeep of admiral and admiral extension packages.
This package provides an interface in R to cell atlas approximations. See the vignette under "Getting started" for instructions. You can also explore the reference documentation for specific functions. Additional interfaces and resources are available at <https://atlasapprox.readthedocs.io>.
This package provides an easy to use unified interface for creating validation plots for any model. The auditor helps to avoid repetitive work consisting of writing code needed to create residual plots. This visualizations allow to asses and compare the goodness of fit, performance, and similarity of models.
R wrapper around the argon HTML library. More at <https://demos.creative-tim.com/argon-design-system/>.
This package provides Azure Active Directory (AAD) authentication functionality for R users of Microsoft's Azure cloud <https://azure.microsoft.com/en-us>. Use this package to obtain OAuth 2.0 tokens for services including Azure Resource Manager, Azure Storage and others. It supports both AAD v1.0 and v2.0, as well as multiple authentication methods, including device code and resource owner grant. Tokens are cached in a user-specific directory obtained using the rappdirs package. The interface is based on the OAuth framework in the httr package, but customised and streamlined for Azure. Part of the AzureR family of packages.
This package implements several exact methods for allocating optimal sample sizes when designing stratified samples. These methods are discussed in Wright (2012) <doi:10.1080/00031305.2012.733679> and Wright (2017) <doi:10.1016/j.spl.2017.04.026>.
An interactive document on the topic of one-way and two-way analysis of variance using rmarkdown and shiny packages. Runtime examples are provided in the package function as well as at <https://kartikeyab.shinyapps.io/ANOVAShiny/>.
Collect your data on digital marketing campaigns from Appsflyer using the Windsor.ai API <https://windsor.ai/api-fields/>.
This package implements the Analytic Hierarchy Process (AHP) method using Gaussian normalization (AHPGaussian) to derive the relative weights of the criteria and alternatives. It also includes functions for visualizing the results and generating graphical outputs. Method as described in: dos Santos, Marcos (2021) <doi:10.13033/ijahp.v13i1.833>.
This package provides a toolbox for programming Clinical Data Standards Interchange Consortium (CDISC) compliant Analysis Data Model (ADaM) datasets in R. ADaM datasets are a mandatory part of any New Drug or Biologics License Application submitted to the United States Food and Drug Administration (FDA). Analysis derivations are implemented in accordance with the "Analysis Data Model Implementation Guide" (CDISC Analysis Data Model Team, 2021, <https://www.cdisc.org/standards/foundational/adam>). The package is an extension package of the admiral package for pediatric clinical trials.
Different tools for managing databases of airborne particles, elaborating the main calculations and visualization of results. In a first step, data are checked using tools for quality control and all missing gaps are completed. Then, the main parameters of the pollen season are calculated and represented graphically. Multiple graphical tools are available: pollen calendars, phenological plots, time series, tendencies, interactive plots, abundance plots...
Amyloid propensity prediction neural network (APPNN) is an amyloidogenicity propensity predictor based on a machine learning approach through recursive feature selection and feed-forward neural networks, taking advantage of newly published sequences with experimental, in vitro, evidence of amyloid formation.
This package provides functions to convert origin-destination data, represented as straight desire lines in the sf Simple Features class system, into JSON files that can be directly imported into A/B Street <https://www.abstreet.org>, a free and open source tool for simulating urban transport systems and scenarios of change <doi:10.1007/s10109-020-00342-2>.
Create awesome Bootstrap 4 dashboards powered by Argon'.
Leveraging Monte Carlo simulations, this package provides tools for diagnosing regression models. It implements a parametric bootstrap framework to compute statistics, generates diagnostic envelopes to assess goodness-of-fit, and evaluates type I error control for Wald tests. By simulating data under the assumption that the model is true, it helps to identify model mis-specifications and enhances the reliability of the model inferences.
Manage dependencies during package development. This can retrieve all dependencies that are used in ".R" files in the "R/" directory, in ".Rmd" files in "vignettes/" directory and in roxygen2 documentation of functions. There is a function to update the "DESCRIPTION" file of your package with CRAN packages or any other remote package. All functions to retrieve dependencies of ".R" scripts and ".Rmd" or ".qmd" files can be used independently of a package development.
The agghoo procedure is an alternative to usual cross-validation. Instead of choosing the best model trained on V subsamples, it determines a winner model for each subsample, and then aggregates the V outputs. For the details, see "Aggregated hold-out" by Guillaume Maillard, Sylvain Arlot, Matthieu Lerasle (2021) <arXiv:1909.04890> published in Journal of Machine Learning Research 22(20):1--55.
Estimate the linear and nonlinear autoregressive distributed lag (ARDL & NARDL) models and the corresponding error correction models, and test for longrun and short-run asymmetric. The general-to-specific approach is also available in estimating the ARDL and NARDL models. The Pesaran, Shin & Smith (2001) (<doi:10.1002/jae.616>) bounds test for level relationships is also provided. The ardl.nardl package also performs short-run and longrun symmetric restrictions available at Shin et al. (2014) <doi:10.1007/978-1-4899-8008-3_9> and their corresponding tests.
Deals with many computations related to the thermodynamics of atmospheric processes. It includes many functions designed to consider the density of air with varying degrees of water vapour in it, saturation pressures and mixing ratios, conversion of moisture indices, computation of atmospheric states of parcels subject to dry or pseudoadiabatic vertical evolutions and atmospheric instability indices that are routinely used for operational weather forecasts or meteorological diagnostics.
This package implements the alternating k-means biclustering algorithm in Fraiman and Li (2020) <arXiv:2009.04550>.
This package implements the Classification-based on Association Rules (CBA) algorithm for association rule classification. The package, also described in Hahsler et al. (2019) <doi:10.32614/RJ-2019-048>, contains several convenience methods that allow to automatically set CBA parameters (minimum confidence, minimum support) and it also natively handles numeric attributes by integrating a pre-discretization step. The rule generation phase is handled by the arules package. To further decrease the size of the CBA models produced by the arc package, postprocessing by the qCBA package is suggested.