Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Scientific and technical article format for the web. Distill articles feature attractive, reader-friendly typography, flexible layout options for visualizations, and full support for footnotes and citations.
This package provides a zero dependency package containing functions to declare labels and missing values, coupled with associated functions to create (weighted) tables of frequencies and various other summary measures. Some of the base functions have been rewritten to make use of the specific information about the missing values, most importantly to distinguish between empty NA and declared NA values. Some functions have similar functionality with the corresponding ones from packages "haven" and "labelled". The aim is to ensure as much compatibility as possible with these packages, while offering an alternative in the objects of class "declared".
This package provides a collection of methods for quantifying the similarity of two or more datasets, many of which can be used for two- or k-sample testing. It provides newly implemented methods as well as wrapper functions for existing methods that enable calling many different methods in a unified framework. The methods were selected from the review and comparison of Stolte et al. (2024) <doi:10.1214/24-SS149>.
Base DataSHIELD functions for the server side. DataSHIELD is a software package which allows you to do non-disclosive federated analysis on sensitive data. DataSHIELD analytic functions have been designed to only share non disclosive summary statistics, with built in automated output checking based on statistical disclosure control. With data sites setting the threshold values for the automated output checks. For more details, see citation("dsBase")'.
Build a Dockerfile straight from your R session. dockerfiler allows you to create step by step a Dockerfile, and provide convenient tools to wrap R code inside this Dockerfile.
Have you ever been tempted to create roxygen2'-style documentation comments for one of your functions that was not part of one of your packages (yet)? This is exactly what this package is about: running roxygen2 on (chunks of) a single code file.
Analyses gene expression data derived from experiments to detect differentially expressed genes by employing the concept of majority voting with five different statistical models. It includes functions for differential expression analysis, significance testing, etc. It simplifies the process of uncovering meaningful patterns and trends within gene expression data, aiding researchers in downstream analysis. Boyer, R.S., Moore, J.S. (1991) <doi:10.1007/978-94-011-3488-0_5>.
Read, construct and write CDISC (Clinical Data Interchange Standards Consortium) Dataset JSON (JavaScript Object Notation) files, while validating per the Dataset JSON schema file, as described in CDISC (2023) <https://www.cdisc.org/standards/data-exchange/dataset-json>.
Fits Bayesian additive regression trees (BART; Chipman, George, and McCulloch (2010) <doi:10.1214/09-AOAS285>) while allowing the updating of predictors or response so that BART can be incorporated as a conditional model in a Gibbs/Metropolis-Hastings sampler. Also serves as a drop-in replacement for package BayesTree'.
Estimation, validation and prediction of models of different types : linear models, additive models, MARS,PolyMARS and Kriging.
This package provides a system for the management, assessment, and psychometric analysis of data from educational and psychological tests.
Toggles the test and production versions of a large data analysis project.
Estimates latent variables of public opinion cross-nationally and over time from sparse and incomparable survey data. DCPO uses a population-level graded response model with country-specific item bias terms. Sampling is conducted with Stan'. References: Solt (2020) <doi:10.31235/osf.io/d5n9p>.
Scripting of structural equation models via lavaan for Dyadic Data Analysis, and helper functions for supplemental calculations, tabling, and model visualization.
Statistical models fit to compositional data are often difficult to interpret due to the sum to 1 constraint on data variables. DImodelsVis provides novel visualisations tools to aid with the interpretation of models fit to compositional data. All visualisations in the package are created using the ggplot2 plotting framework and can be extended like every other ggplot object.
Estimate the Deterministic Input, Noisy "And" Gate (DINA) cognitive diagnostic model parameters using the Gibbs sampler described by Culpepper (2015) <doi:10.3102/1076998615595403>.
Data depth concept offers a variety of powerful and user friendly tools for robust exploration and inference for multivariate data. The offered techniques may be successfully used in cases of lack of our knowledge on parametric models generating data due to their nature. The package consist of among others implementations of several data depth techniques involving multivariate quantile-quantile plots, multivariate scatter estimators, multivariate Wilcoxon tests and robust regressions.
Evaluation (S4-)classes based on package distr for evaluating procedures (estimators/tests) at data/simulation in a unified way.
Implement the statistical test proposed in Weng et al. (2021) to test whether the average treatment effect curve is constant and whether a discrete covariate is a significant effect modifier.
This package provides a Bayesian hierarchical model for clustering dissimilarity data using the Dirichlet process. The latent configuration of objects and the number of clusters are automatically inferred during the fitting process. The package supports multiple models which are available to detect clusters of various shapes and sizes using different covariance structures. Additional functions are included to ensure adequate model fits through prior and posterior predictive checks.
Overload utils::'? to build unary and binary operators from existing functions, piping operators of different precedence, and flexible syntaxes.
Testing and documenting code that communicates with remote databases can be painful. Although the interaction with R is usually relatively simple (e.g. data(frames) passed to and from a database), because they rely on a separate service and the data there, testing them can be difficult to set up, unsustainable in a continuous integration environment, or impossible without replicating an entire production cluster. This package addresses that by allowing you to make recordings from your database interactions and then play them back while testing (or in other contexts) all without needing to spin up or have access to the database your code would typically connect to.
This package provides functions for fitting a Bayesian model for grouping binary dissimilarity matrices in homogeneous clusters. Currently, it includes methods only for binary data (<doi:10.18637/jss.v100.i16>).
Using a Gaussian copula approach, this package generates simulated data mimicking a target real dataset. It supports normal, Poisson, empirical, and DESeq2 (negative binomial with size factors) marginal distributions. It uses an low-rank plus diagonal covariance matrix to efficiently generate omics-scale data. Methods are described in: Yang, Grant, and Brooks (2025) <doi:10.1101/2025.01.31.634335>.