Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides methods to detect differential item functioning (DIF) in dichotomous, polytomous, and continuous items, using both classical and modern approaches. These include Mantel-Haenszel procedures, logistic regression (including ordinal models), and regularization-based methods such as LASSO. Uniform and non-uniform DIF effects can be detected, and some methods support multiple focal groups. The package also provides tools for anchor purification, rest score matching, effect size estimation, and DIF simulation. See Magis, Beland, Tuerlinckx, and De Boeck (2010, Behavior Research Methods, 42, 847â 862, <doi:10.3758/BRM.42.3.847>) for a general overview.
Diagnostic classification models are psychometric models used to categorically estimate respondents mastery, or proficiency, on a set of predefined skills (Bradshaw, 2016, <doi:10.1002/9781118956588.ch13>). Diagnostic models can be estimated with Stan'; however, the necessary scripts can be long and complicated. This package automates the creation of Stan scripts for diagnostic classification models. Specify different types of diagnostic models, define prior distributions, and automatically generate the necessary Stan code for estimating the model.
Build a Dockerfile straight from your R session. dockerfiler allows you to create step by step a Dockerfile, and provide convenient tools to wrap R code inside this Dockerfile.
This package performs differential network analysis to infer disease specific gene networks.
This package provides a suite of functions for analyzing and visualizing the health economic outputs of mathematical models. This package was developed with funding from the National Institutes of Allergy and Infectious Diseases of the National Institutes of Health under award no. R01AI138783. The content of this package is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. The theoretical underpinnings of dampack''s functionality are detailed in Hunink et al. (2014) <doi:10.1017/CBO9781139506779>.
Utilities for handling dates and times, such as selecting particular days of the week or month, formatting timestamps as required by RSS feeds, or converting timestamp representations of other software (such as MATLAB and Excel') to R. The package is lightweight (no dependencies, pure R implementations) and relies only on R's standard classes to represent dates and times ('Date and POSIXt'); it aims to provide efficient implementations, through vectorisation and the use of R's native numeric representations of timestamps where possible.
Graphical methods for compactly illustrating probability distributions, including density strips, density regions, sectioned density plots and varying width strips, using base R graphics. Note that the ggdist package offers a similar set of tools for illustrating distributions, based on ggplot2'.
Double constrained correspondence analysis (dc-CA) analyzes (multi-)trait (multi-)environment ecological data by using the vegan package and native R code. Throughout the two step algorithm of ter Braak et al. (2018) is used. This algorithm combines and extends community- (sample-) and species-level analyses, i.e. the usual community weighted means (CWM)-based regression analysis and the species-level analysis of species-niche centroids (SNC)-based regression analysis. The two steps use canonical correspondence analysis to regress the abundance data on to the traits and (weighted) redundancy analysis to regress the CWM of the orthonormalized traits on to the environmental predictors. The function dc_CA() has an option to divide the abundance data of a site by the site total, giving equal site weights. This division has the advantage that the multivariate analysis corresponds with an unweighted (multi-trait) community-level analysis, instead of being weighted. The first step of the algorithm uses vegan::cca(). The second step uses wrda() but vegan::rda() if the site weights are equal. This version has a predict() function. For details see ter Braak et al. 2018 <doi:10.1007/s10651-017-0395-x>. and ter Braak & van Rossum 2025 <doi:10.1016/j.ecoinf.2025.103143>.
Explore data related to the Doctor Who TV series.
Hash an expression with its dependencies and store its value, reloading it from a file as long as both the expression and its dependencies stay the same.
Fit of a double additive location-scale model with a nonparametric error distribution from possibly right- or interval censored data. The additive terms in the location and dispersion submodels, as well as the unknown error distribution in the location-scale model, are estimated using Laplace P-splines. For more details, see Lambert (2021) <doi:10.1016/j.csda.2021.107250>.
This package provides a collection of functions to preprocess data and organize them in a format amenable to use by chevron.
Detection of differential item functioning (DIF) among dichotomously scored items and differential distractor functioning (DDF) among unscored items with non-linear regression procedures based on generalized logistic regression models (Hladka & Martinkova, 2020, <doi:10.32614/RJ-2020-014>).
Allows to simulate SNP data using genlight objects. For example, it is straight forward to simulate a simple drift scenario with exchange of individuals between two populations or create a new genlight object based on allele frequencies of an existing genlight object.
Empirical Bayes methods for learning prior distributions from data. An unknown prior distribution (g) has yielded (unobservable) parameters, each of which produces a data point from a parametric exponential family (f). The goal is to estimate the unknown prior ("g-modeling") by deconvolution and Empirical Bayes methods. Details and examples are in the paper by Narasimhan and Efron (2020, <doi:10.18637/jss.v094.i11>).
This package provides a tool to calculate the correlation boundary for the correlation between the response rate and the log-rank test statistic for the binary surrogate endpoint and the time-to-event primary endpoint, as well as conduct simulation studies to obtain design operating characteristics of the drop-the-losers design.
Identifies code blocks that have a high level of similarity within a set of R files.
This package provides a system designed for detecting concept drift in streaming datasets. It offers a comprehensive suite of statistical methods to detect concept drift, including methods for monitoring changes in data distributions over time. The package supports several tests, such as Drift Detection Method (DDM), Early Drift Detection Method (EDDM), Hoeffding Drift Detection Methods (HDDM_A, HDDM_W), Kolmogorov-Smirnov test-based Windowing (KSWIN) and Page Hinkley (PH) tests. The methods implemented in this package are based on established research and have been demonstrated to be effective in real-time data analysis. For more details on the methods, please check to the following sources. KobyliŠska et al. (2023) <doi:10.48550/arXiv.2308.11446>, S. Kullback & R.A. Leibler (1951) <doi:10.1214/aoms/1177729694>, Gama et al. (2004) <doi:10.1007/978-3-540-28645-5_29>, Baena-Garcia et al. (2006) <https://www.researchgate.net/publication/245999704_Early_Drift_Detection_Method>, Frà as-Blanco et al. (2014) <https://ieeexplore.ieee.org/document/6871418>, Raab et al. (2020) <doi:10.1016/j.neucom.2019.11.111>, Page (1954) <doi:10.1093/biomet/41.1-2.100>, Montiel et al. (2018) <https://jmlr.org/papers/volume19/18-251/18-251.pdf>.
This package provides an interface to D4Science StorageHub API (<https://dev.d4science.org/>). Allows to get user profile, and perform actions over the StorageHub (workspace) including creation of folders, files management (upload/update/deletion/sharing), and listing of stored resources.
This package provides functions for analyzing dichotomous choice contingent valuation (CV) data. It provides functions for estimating parametric and nonparametric models for single-, one-and-one-half-, and double-bounded CV data. For details, see Aizaki et al. (2022) <doi:10.1007/s42081-022-00171-1>.
Efficient Global Optimization (EGO) algorithm as described in "Roustant et al. (2012)" <doi:10.18637/jss.v051.i01> and adaptations for problems with noise ("Picheny and Ginsbourger, 2012") <doi:10.1016/j.csda.2013.03.018>, parallel infill, and problems with constraints.
Time series analysis of network connectivity. Detects and visualizes change points between networks. Methods included in the package are discussed in depth in Baek, C., Gates, K. M., Leinwand, B., Pipiras, V. (2021) "Two sample tests for high-dimensional auto-covariances" <doi:10.1016/j.csda.2020.107067> and Baek, C., Gampe, M., Leinwand B., Lindquist K., Hopfinger J. and Gates K. (2023) â Detecting functional connectivity changes in fMRI dataâ <doi:10.1007/s11336-023-09908-7>.
This package provides functions to pipe data from R to DataGraph', a graphing and analysis application for mac OS. Create a live connection using either .dtable or .dtbin files that can be read by DataGraph'. Can save a data frame, collection of data frames and sequences of data frames and individual vectors. For more information see <https://community.visualdatatools.com/datagraph/knowledge-base/r-package/>.
This package provides a dimension reduction technique for outlier detection. DOBIN: a Distance based Outlier BasIs using Neighbours, constructs a set of basis vectors for outlier detection. This is not an outlier detection method; rather it is a pre-processing method for outlier detection. It brings outliers to the fore-front using fewer basis vectors (Kandanaarachchi, Hyndman 2020) <doi:10.1080/10618600.2020.1807353>.