Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Utilities for mixed frequency data. In particular, use to aggregate and normalize tabular mixed frequency data, index dates to end of period, and seasonally adjust tabular data.
Access Datastream content through <https://product.datastream.com/dswsclient/Docs/Default.aspx>., our historical financial database with over 35 million individual instruments or indicators across all major asset classes, including over 19 million active economic indicators. It features 120 years of data, across 175 countries â the information you need to interpret market trends, economic cycles, and the impact of world events. Data spans bond indices, bonds, commodities, convertibles, credit default swaps, derivatives, economics, energy, equities, equity indices, ESG, estimates, exchange rates, fixed income, funds, fundamentals, interest rates, and investment trusts. Unique content includes I/B/E/S Estimates, Worldscope Fundamentals, point-in-time data, and Reuters Polls. Alongside the content, sit a set of powerful analytical tools for exploring relationships between different asset types, with a library of customizable analytical functions. In-house timeseries can also be uploaded using the package to comingle with Datastream maintained datasets, use with these analytical tools and displayed in Datastreamâ s flexible charting facilities in Microsoft Office.
Tutarials of R learning easily and happily.
Supporting the quantitative analysis of binary welfare based decision making processes using Monte Carlo simulations. Decision support is given on two levels: (i) The actual decision level is to choose between two alternatives under probabilistic uncertainty. This package calculates the optimal decision based on maximizing expected welfare. (ii) The meta decision level is to allocate resources to reduce the uncertainty in the underlying decision problem, i.e to increase the current information to improve the actual decision making process. This problem is dealt with using the Value of Information Analysis. The Expected Value of Information for arbitrary prospective estimates can be calculated as well as Individual Expected Value of Perfect Information. The probabilistic calculations are done via Monte Carlo simulations. This Monte Carlo functionality can be used on its own.
Utilities to represent, visualize, filter, analyse, and summarize time-depth recorder (TDR) data. Miscellaneous functions for handling location data are also provided.
Exploration of simulation models (apps) of various infectious disease transmission dynamics scenarios. The purpose of the package is to help individuals learn about infectious disease epidemiology (ecology/evolution) from a dynamical systems perspective. All apps include explanations of the underlying models and instructions on what to do with the models.
An interactive editor built on rhandsontable to allow the interactive viewing, entering, filtering and editing of data in R <https://dillonhammill.github.io/DataEditR/>.
This package creates a Dumbbell Plot.
Add a "Did You Mean" feature to the R interactive. With this package, error messages for misspelled input of variable names or package names suggest what you really want to do in addition to notification of the mistake.
Transform newswire and earnings call transcripts as PDF obtained from Nexis Uni to R data frames. Various newswires and FairDisclosure earnings call formats are supported. Further, users can apply several pre-defined dictionaries on the data based on Graffin et al. (2016)<doi:10.5465/amj.2013.0288> and Gamache et al. (2015)<doi:10.5465/amj.2013.0377>.
Flexible and efficient cleaning of data with interactivity. datacleanr facilitates best practices in data analyses and reproducibility with built-in features and by translating interactive/manual operations to code. The package is designed for interoperability, and so seamlessly fits into reproducible analyses pipelines in R'.
Demonstrate the results of a statistical model object as a dynamic nomogram in an RStudio panel or web browser. The package provides two generics functions: DynNom, which display statistical model objects as a dynamic nomogram; DNbuilder, which builds required scripts to publish a dynamic nomogram on a web server such as the <https://www.shinyapps.io/>. Current version of DynNom supports stats::lm, stats::glm, survival::coxph, rms::ols, rms::Glm, rms::lrm, rms::cph, and mgcv::gam model objects.
Metrics of difference for comparing pairs of variables or pairs of maps representing real or categorical variables at original and multiple resolutions.
The debar sequence processing pipeline is designed for denoising high throughput sequencing data for the animal DNA barcode marker cytochrome c oxidase I (COI). The package is designed to detect and correct insertion and deletion errors within sequencer outputs. This is accomplished through comparison of input sequences against a profile hidden Markov model (PHMM) using the Viterbi algorithm (for algorithm details see Durbin et al. 1998, ISBN: 9780521629713). Inserted base pairs are removed and deleted base pairs are accounted for through the introduction of a placeholder character. Since the PHMM is a probabilistic representation of the COI barcode, corrections are not always perfect. For this reason debar censors base pairs adjacent to reported indel sites, turning them into placeholder characters (default is 7 base pairs in either direction, this feature can be disabled). Testing has shown that this censorship results in the correct sequence length being restored, and erroneous base pairs being masked the vast majority of the time (>95%).
This package provides functions to pipe data from R to DataGraph', a graphing and analysis application for mac OS. Create a live connection using either .dtable or .dtbin files that can be read by DataGraph'. Can save a data frame, collection of data frames and sequences of data frames and individual vectors. For more information see <https://community.visualdatatools.com/datagraph/knowledge-base/r-package/>.
This package provides a framework for creating production outputs. Users can frame a table, listing, or figure with headers and footers and save to an output file. Stores an intermediate docorator object for reproducibility and rendering to multiple output types.
Solves ordinary and delay differential equations, where the objective function is written in either R or C. Suitable only for non-stiff equations, the solver uses a Dormand-Prince method that allows interpolation of the solution at any point. This approach is as described by Hairer, Norsett and Wanner (1993) <ISBN:3540604529>. Support is also included for iterating difference equations.
Implementation of the Decorrelated Local Linear estimator proposed in <arxiv:1907.12732>. It constructs the confidence interval for the derivative of the function of interest under the high-dimensional sparse additive model.
Given the non-negative data and its distribution, the package estimates the rank parameter for Non-negative Matrix Factorization. The method is based on hypothesis testing, using a deconvolved bootstrap distribution to assess the significance level accurately despite the large amount of optimization error. The distribution of the non-negative data can be either Normal distributed or Poisson distributed.
This package provides a graphical user interface (GUI) to the functions implemented in the R package DQAstats'. Publication: Mang et al. (2021) <doi:10.1186/s12911-022-01961-z>.
Analysis of preprocessed dramatic texts, with respect to literary research. The package provides functions to analyze and visualize information about characters, stage directions, the dramatic structure and the text itself. The dramatic texts are expected to be in CSV format, which can be installed from within the package, sample texts are provided. The package and the reasoning behind it are described in Reiter et al. (2017) <doi:10.18420/in2017_119>.
Explore data related to the Doctor Who TV series.
Fits disaggregation regression models using TMB ('Template Model Builder'). When the response data are aggregated to polygon level but the predictor variables are at a higher resolution, these models can be useful. Regression models with spatial random fields. The package is described in detail in Nandi et al. (2023) <doi:10.18637/jss.v106.i11>.
Estimates dose-response relations from summarized dose-response data and to combines them according to principles of (multivariate) random-effects models.