_            _    _        _         _
      /\ \         /\ \ /\ \     /\_\      / /\
      \_\ \       /  \ \\ \ \   / / /     / /  \
      /\__ \     / /\ \ \\ \ \_/ / /     / / /\ \__
     / /_ \ \   / / /\ \ \\ \___/ /     / / /\ \___\
    / / /\ \ \ / / /  \ \_\\ \ \_/      \ \ \ \/___/
   / / /  \/_// / /   / / / \ \ \        \ \ \
  / / /      / / /   / / /   \ \ \   _    \ \ \
 / / /      / / /___/ / /     \ \ \ /_/\__/ / /
/_/ /      / / /____\/ /       \ \_\\ \/___/ /
\_\/       \/_________/         \/_/ \_____\/

Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.

API method:

GET /api/packages?search=hello&page=1&limit=20

where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned in response headers.

If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.


r-earthtide 0.1.7
Propagated dependencies: r-rcppthread@2.2.0 r-rcppeigen@0.3.4.0.2 r-rcpp@1.1.0 r-r6@2.6.1
Channel: guix-cran
Location: guix-cran/packages/e.scm (guix-cran packages e)
Home page: https://github.com/jkennel/earthtide
Licenses: GPL 3
Build system: r
Synopsis: Parallel Implementation of 'ETERNA 3.40' for Prediction and Analysis of Earth Tides
Description:

This is a port of Fortran ETERNA 3.4 <http://igets.u-strasbg.fr/soft_and_tool.php> by H.G. Wenzel for calculating synthetic Earth tides using the Hartmann and Wenzel (1994) <doi:10.1029/95GL03324> or Kudryavtsev (2004) <doi:10.1007/s00190-003-0361-2> tidal catalogs.

r-expss 0.11.7
Propagated dependencies: r-matrixstats@1.5.0 r-maditr@0.8.7 r-htmltable@2.4.3 r-data-table@1.17.8
Channel: guix-cran
Location: guix-cran/packages/e.scm (guix-cran packages e)
Home page: https://gdemin.github.io/expss/
Licenses: GPL 2+
Build system: r
Synopsis: Tables, Labels and Some Useful Functions from Spreadsheets and 'SPSS' Statistics
Description:

Package computes and displays tables with support for SPSS'-style labels, multiple and nested banners, weights, multiple-response variables and significance testing. There are facilities for nice output of tables in knitr', Shiny', *.xlsx files, R and Jupyter notebooks. Methods for labelled variables add value labels support to base R functions and to some functions from other packages. Additionally, the package brings popular data transformation functions from SPSS Statistics and Excel': RECODE', COUNT', COUNTIF', VLOOKUP and etc. These functions are very useful for data processing in marketing research surveys. Package intended to help people to move data processing from Excel and SPSS to R.

r-envstat 0.0.3
Propagated dependencies: r-yaml@2.3.10 r-rstudioapi@0.17.1 r-httr2@1.2.1 r-cli@3.6.5
Channel: guix-cran
Location: guix-cran/packages/e.scm (guix-cran packages e)
Home page: https://envstat.sellorm.com
Licenses: Expat
Build system: r
Synopsis: Configurable Reporting on your External Compute Environment
Description:

Runs a series of configurable tests against a user's compute environment. This can be used for checking that things like a specific directory or an environment variable is available before you start an analysis. Alternatively, you can use the package's situation report when filing error reports with your compute infrastructure.

r-educabr 0.1.0
Propagated dependencies: r-tidyr@1.3.1 r-stringr@1.6.0 r-rlang@1.1.6 r-readr@2.1.6 r-purrr@1.2.0 r-httr2@1.2.1 r-dplyr@1.1.4 r-cli@3.6.5
Channel: guix-cran
Location: guix-cran/packages/e.scm (guix-cran packages e)
Home page: https://github.com/SidneyBissoli/educabR
Licenses: Expat
Build system: r
Synopsis: Download and Process Brazilian Education Data from INEP
Description:

Download and process public education data from INEP (Instituto Nacional de Estudos e Pesquisas Educacionais Anà sio Teixeira). Provides functions to access microdata from the School Census (Censo Escolar), ENEM (Exame Nacional do Ensino Médio), IDEB (à ndice de Desenvolvimento da Educação Básica), and other educational datasets. Returns data in tidy format ready for analysis. Data source: INEP Open Data Portal <https://www.gov.br/inep/pt-br/acesso-a-informacao/dados-abertos>.

r-empiricaldynamics 0.1.2
Dependencies: julia@1.8.5
Propagated dependencies: r-tseries@0.10-58 r-signal@1.8-1 r-minpack-lm@1.2-4 r-lmtest@0.9-40 r-juliacall@0.17.6 r-gridextra@2.3 r-ggplot2@4.0.1 r-cvxr@1.0-15
Channel: guix-cran
Location: guix-cran/packages/e.scm (guix-cran packages e)
Home page: https://github.com/IsadoreNabi/EmpiricalDynamics
Licenses: Expat
Build system: r
Synopsis: Empirical Discovery of Differential Equations from Time Series Data
Description:

This package provides a comprehensive toolkit for discovering differential and difference equations from empirical time series data using symbolic regression. The package implements a complete workflow from data preprocessing (including Total Variation Regularized differentiation for noisy economic data), visual exploration of dynamical structure, and symbolic equation discovery via genetic algorithms. It leverages a high-performance Julia backend ('SymbolicRegression.jl') to provide industrial-grade robustness, physics-informed constraints, and rigorous out-of-sample validation. Designed for economists, physicists, and researchers studying dynamical systems from observational data.

r-ebchs 0.1.0
Propagated dependencies: r-pracma@2.4.6 r-fda@6.3.0
Channel: guix-cran
Location: guix-cran/packages/e.scm (guix-cran packages e)
Home page: https://github.com/dulilun/EBCHS
Licenses: Expat
Build system: r
Synopsis: An Empirical Bayes Method for Chi-Squared Data
Description:

We provide the main R functions to compute the posterior interval for the noncentrality parameter of the chi-squared distribution. The skewness estimate of the posterior distribution is also available to improve the coverage rate of posterior intervals. Details can be found in Du and Hu (2020) <doi:10.1080/01621459.2020.1777137>.

r-eatgads 1.2.0
Propagated dependencies: r-tibble@3.3.0 r-stringi@1.8.7 r-plyr@1.8.9 r-hms@1.1.4 r-haven@2.5.5 r-eattools@0.7.9 r-eatdb@0.5.0 r-data-table@1.17.8
Channel: guix-cran
Location: guix-cran/packages/e.scm (guix-cran packages e)
Home page: https://github.com/beckerbenj/eatGADS
Licenses: GPL 2+
Build system: r
Synopsis: Data Management of Large Hierarchical Data
Description:

Import SPSS data, handle and change SPSS meta data, store and access large hierarchical data in SQLite data bases.

r-edison 1.1.2
Propagated dependencies: r-mass@7.3-65 r-corpcor@1.6.10
Channel: guix-cran
Location: guix-cran/packages/e.scm (guix-cran packages e)
Home page: https://cran.r-project.org/package=EDISON
Licenses: GPL 2
Build system: r
Synopsis: Network Reconstruction and Changepoint Detection
Description:

Package EDISON (Estimation of Directed Interactions from Sequences Of Non-homogeneous gene expression) runs an MCMC simulation to reconstruct networks from time series data, using a non-homogeneous, time-varying dynamic Bayesian network. Networks segments and changepoints are inferred concurrently, and information sharing priors provide a reduction of the inference uncertainty.

r-elic 0.1.0
Propagated dependencies: r-mass@7.3-65 r-distrellipse@2.8.4 r-distr@2.9.7
Channel: guix-cran
Location: guix-cran/packages/e.scm (guix-cran packages e)
Home page: https://cran.r-project.org/package=ELIC
Licenses: Expat
Build system: r
Synopsis: LIC for Distributed Elliptical Model
Description:

This comprehensive toolkit for Distributed Elliptical model is designated as "ELIC" (The LIC for Distributed Elliptical Model Analysis) analysis. It is predicated on the assumption that the error term adheres to a Elliptical distribution. The philosophy of the package is described in Guo G. (2020) <doi:10.1080/02664763.2022.2053949>.

r-eiopar 0.1.1
Propagated dependencies: r-jsonlite@2.0.0 r-httr@1.4.7 r-curl@7.0.0
Channel: guix-cran
Location: guix-cran/packages/e.scm (guix-cran packages e)
Home page: https://cran.r-project.org/package=eiopaR
Licenses: Expat
Build system: r
Synopsis: Access to RFR (Risk-Free Rate) Curves Produced by the EIOPA
Description:

This package provides EIOPA (European Insurance And Occupational Pensions Authority) risk-free rates. Please note that the author of this package is not affiliated with EIOPA. The data is accessed through a REST API available at <https://mehdiechchelh.com/api/>.

r-extendedfamily 0.2.4
Propagated dependencies: r-assertthat@0.2.1
Channel: guix-cran
Location: guix-cran/packages/e.scm (guix-cran packages e)
Home page: https://cran.r-project.org/package=extendedFamily
Licenses: GPL 3
Build system: r
Synopsis: Additional Families for Generalized Linear Models
Description:

This package creates family objects identical to stats family but for new links.

r-eventstream 0.1.1
Propagated dependencies: r-tensora@0.36.2.1 r-mass@7.3-65 r-glmnet@4.1-10 r-dplyr@1.1.4 r-dbscan@1.2.3 r-changepoint@2.3 r-abind@1.4-8
Channel: guix-cran
Location: guix-cran/packages/e.scm (guix-cran packages e)
Home page: https://sevvandi.github.io/eventstream/index.html
Licenses: Expat
Build system: r
Synopsis: Streaming Events and their Early Classification
Description:

This package implements event extraction and early classification of events in data streams in R. It has the functionality to generate 2-dimensional data streams with events belonging to 2 classes. These events can be extracted and features computed. The event features extracted from incomplete-events can be classified using a partial-observations-classifier (Kandanaarachchi et al. 2018) <doi:10.1371/journal.pone.0236331>.

r-epsiwal 0.1.0
Channel: guix-cran
Location: guix-cran/packages/e.scm (guix-cran packages e)
Home page: https://github.com/shabbychef/epsiwal
Licenses: LGPL 3
Build system: r
Synopsis: Exact Post Selection Inference with Applications to the Lasso
Description:

This package implements the conditional estimation procedure of Lee, Sun, Sun and Taylor (2016) <doi:10.1214/15-AOS1371>. This procedure allows hypothesis testing on the mean of a normal random vector subject to linear constraints.

r-emmixmfa 2.0.14
Channel: guix-cran
Location: guix-cran/packages/e.scm (guix-cran packages e)
Home page: https://github.com/suren-rathnayake/EMMIXmfa
Licenses: GPL 2+
Build system: r
Synopsis: Mixture Models with Component-Wise Factor Analyzers
Description:

We provide functions to fit finite mixtures of multivariate normal or t-distributions to data with various factor analytic structures adopted for the covariance/scale matrices. The factor analytic structures available include mixtures of factor analyzers and mixtures of common factor analyzers. The latter approach is so termed because the matrix of factor loadings is common to components before the component-specific rotation of the component factors to make them white noise. Note that the component-factor loadings are not common after this rotation. Maximum likelihood estimators of model parameters are obtained via the Expectation-Maximization algorithm. See descriptions of the algorithms used in McLachlan GJ, Peel D (2000) <doi:10.1002/0471721182.ch8> McLachlan GJ, Peel D (2000) <ISBN:1-55860-707-2> McLachlan GJ, Peel D, Bean RW (2003) <doi:10.1016/S0167-9473(02)00183-4> McLachlan GJ, Bean RW, Ben-Tovim Jones L (2007) <doi:10.1016/j.csda.2006.09.015> Baek J, McLachlan GJ, Flack LK (2010) <doi:10.1109/TPAMI.2009.149> Baek J, McLachlan GJ (2011) <doi:10.1093/bioinformatics/btr112> McLachlan GJ, Baek J, Rathnayake SI (2011) <doi:10.1002/9781119995678.ch9>.

r-emar 1.0.0
Channel: guix-cran
Location: guix-cran/packages/e.scm (guix-cran packages e)
Home page: https://cran.r-project.org/package=EMAR
Licenses: GPL 3+
Build system: r
Synopsis: Empirical Model Assessment
Description:

This package provides a tool that allows users to generate various indices for evaluating statistical models. The fitstat() function computes indices based on the fitting data. The valstat() function computes indices based on the validation data set. Both fitstat() and valstat() will return 16 indices SSR: residual sum of squares, TRE: total relative error, Bias: mean bias, MRB: mean relative bias, MAB: mean absolute bias, MAPE: mean absolute percentage error, MSE: mean squared error, RMSE: root mean square error, Percent.RMSE: percentage root mean squared error, R2: coefficient of determination, R2adj: adjusted coefficient of determination, APC: Amemiya's prediction criterion, logL: Log-likelihood, AIC: Akaike information criterion, AICc: corrected Akaike information criterion, BIC: Bayesian information criterion, HQC: Hannan-Quin information criterion. The lower the better for the SSR, TRE, Bias, MRB, MAB, MAPE, MSE, RMSE, Percent.RMSE, APC, AIC, AICc, BIC and HQC indices. The higher the better for R2 and R2adj indices. Petre Stoica, P., Selén, Y. (2004) <doi:10.1109/MSP.2004.1311138>\n Zhou et al. (2023) <doi:10.3389/fpls.2023.1186250>\n Ogana, F.N., Ercanli, I. (2021) <doi:10.1007/s11676-021-01373-1>\n Musabbikhah et al. (2019) <doi:10.1088/1742-6596/1175/1/012270>.

r-ebtobit 1.0.2
Propagated dependencies: r-rcppparallel@5.1.11-1 r-rcpparmadillo@15.2.2-1 r-rcpp@1.1.0
Channel: guix-cran
Location: guix-cran/packages/e.scm (guix-cran packages e)
Home page: https://github.com/barbehenna/ebTobit
Licenses: GPL 3
Build system: r
Synopsis: Empirical Bayesian Tobit Matrix Estimation
Description:

Estimation tools for multidimensional Gaussian means using empirical Bayesian g-modeling. Methods are able to handle fully observed data as well as left-, right-, and interval-censored observations (Tobit likelihood); descriptions of these methods can be found in Barbehenn and Zhao (2023) <doi:10.48550/arXiv.2306.07239>. Additional, lower-level functionality based on Kiefer and Wolfowitz (1956) <doi:10.1214/aoms/1177728066> and Jiang and Zhang (2009) <doi:10.1214/08-AOS638> is provided that can be used to accelerate many empirical Bayes and nonparametric maximum likelihood problems.

r-escalation 0.2.3
Propagated dependencies: r-viridis@0.6.5 r-trialr@0.1.6 r-tidyselect@1.2.1 r-tidyr@1.3.1 r-tibble@3.3.0 r-testthat@3.3.0 r-stringr@1.6.0 r-rcolorbrewer@1.1-3 r-r6@2.6.1 r-purrr@1.2.0 r-mvtnorm@1.3-3 r-magrittr@2.0.4 r-iso@0.0-21 r-gtools@3.9.5 r-ggplot2@4.0.1 r-dplyr@1.1.4 r-diagrammer@1.0.11 r-dfcrm@0.2-2.1 r-boin@2.7.2 r-binom@1.1-1.1
Channel: guix-cran
Location: guix-cran/packages/e.scm (guix-cran packages e)
Home page: https://brockk.github.io/escalation/
Licenses: GPL 3+
Build system: r
Synopsis: Modular Approach to Dose-Finding Clinical Trials
Description:

This package provides methods for working with dose-finding clinical trials. We provide implementations of many dose-finding clinical trial designs, including the continual reassessment method (CRM) by O'Quigley et al. (1990) <doi:10.2307/2531628>, the toxicity probability interval (TPI) design by Ji et al. (2007) <doi:10.1177/1740774507079442>, the modified TPI (mTPI) design by Ji et al. (2010) <doi:10.1177/1740774510382799>, the Bayesian optimal interval design (BOIN) by Liu & Yuan (2015) <doi:10.1111/rssc.12089>, EffTox by Thall & Cook (2004) <doi:10.1111/j.0006-341X.2004.00218.x>; the design of Wages & Tait (2015) <doi:10.1080/10543406.2014.920873>, and the 3+3 described by Korn et al. (1994) <doi:10.1002/sim.4780131802>. All designs are implemented with a common interface. We also offer optional additional classes to tailor the behaviour of all designs, including avoiding skipping doses, stopping after n patients have been treated at the recommended dose, stopping when a toxicity condition is met, or demanding that n patients are treated before stopping is allowed. By daisy-chaining together these classes using the pipe operator from magrittr', it is simple to tailor the behaviour of a dose-finding design so it behaves how the trialist wants. Having provided a flexible interface for specifying designs, we then provide functions to run simulations and calculate dose-paths for future cohorts of patients.

r-eigenmodel 1.12
Channel: guix-cran
Location: guix-cran/packages/e.scm (guix-cran packages e)
Home page: https://pdhoff.github.io/
Licenses: GPL 2
Build system: r
Synopsis: Semiparametric Factor and Regression Models for Symmetric Relational Data
Description:

Estimation of the parameters in a model for symmetric relational data (e.g., the above-diagonal part of a square matrix), using a model-based eigenvalue decomposition and regression. Missing data is accommodated, and a posterior mean for missing data is calculated under the assumption that the data are missing at random. The marginal distribution of the relational data can be arbitrary, and is fit with an ordered probit specification. See Hoff (2007) <doi:10.48550/arXiv.0711.1146>. for details on the model.

r-ecdfht 0.1.1
Propagated dependencies: r-rgl@1.3.31
Channel: guix-cran
Location: guix-cran/packages/e.scm (guix-cran packages e)
Home page: https://cran.r-project.org/package=ecdfHT
Licenses: GPL 3+
Build system: r
Synopsis: Empirical CDF for Heavy Tailed Data
Description:

Computes and plots a transformed empirical CDF (ecdf) as a diagnostic for heavy tailed data, specifically data with power law decay on the tails. Routines for annotating the plot, comparing data to a model, fitting a nonparametric model, and some multivariate extensions are given.

r-evophylo 0.3.5
Propagated dependencies: r-unglue@0.1.0 r-treeio@1.34.0 r-tidyr@1.3.1 r-tibble@3.3.0 r-rtsne@0.17 r-phangorn@2.12.1 r-patchwork@1.3.2 r-magrittr@2.0.4 r-ggtree@4.0.1 r-ggrepel@0.9.6 r-ggplot2@4.0.1 r-dplyr@1.1.4 r-deeptime@2.3.1 r-cluster@2.1.8.1 r-ape@5.8-1
Channel: guix-cran
Location: guix-cran/packages/e.scm (guix-cran packages e)
Home page: https://github.com/tiago-simoes/EvoPhylo
Licenses: GPL 2+
Build system: r
Synopsis: Pre- And Postprocessing of Morphological Data from Relaxed Clock Bayesian Phylogenetics
Description:

This package performs automated morphological character partitioning for phylogenetic analyses and analyze macroevolutionary parameter outputs from clock (time-calibrated) Bayesian inference analyses, following concepts introduced by Simões and Pierce (2021) <doi:10.1038/s41559-021-01532-x>.

r-elmr 1.0
Channel: guix-cran
Location: guix-cran/packages/e.scm (guix-cran packages e)
Home page: https://cran.r-project.org/package=ELMR
Licenses: GPL 2 GPL 3
Build system: r
Synopsis: Extreme Machine Learning (ELM)
Description:

Training and prediction functions are provided for the Extreme Learning Machine algorithm (ELM). The ELM use a Single Hidden Layer Feedforward Neural Network (SLFN) with random generated weights and no gradient-based backpropagation. The training time is very short and the online version allows to update the model using small chunk of the training set at each iteration. The only parameter to tune is the hidden layer size and the learning function.

r-earthdatalogin 0.0.3
Propagated dependencies: r-purrr@1.2.0 r-openssl@2.3.4 r-jsonlite@2.0.0 r-httr2@1.2.1 r-httr@1.4.7 r-base64enc@0.1-3
Channel: guix-cran
Location: guix-cran/packages/e.scm (guix-cran packages e)
Home page: https://boettiger-lab.github.io/earthdatalogin/
Licenses: Expat
Build system: r
Synopsis: NASA 'EarthData' Access Utilities
Description:

Providing easy, portable access to NASA EarthData products through the use of bearer tokens. Much of NASA's public data catalogs hosted and maintained by its 12 Distributed Active Archive Centers ('DAACs') are now made available on the Amazon Web Services S3 storage. However, accessing this data through the standard S3 API is restricted to only to compute resources running inside us-west-2 Data Center in Portland, Oregon, which allows NASA to avoid being charged data egress rates. This package provides public access to the data from any networked device by using the EarthData login application programming interface (API), <https://www.earthdata.nasa.gov/data/earthdata-login>, providing convenient authentication and access to cloud-hosted NASA EarthData products. This makes access to a wide range of earth observation data from any location straight forward and compatible with R packages that are widely used with cloud native earth observation data (such as terra', sf', etc.).

r-expsmooth 2.3
Propagated dependencies: r-forecast@8.24.0
Channel: guix-cran
Location: guix-cran/packages/e.scm (guix-cran packages e)
Home page: https://github.com/robjhyndman/expsmooth
Licenses: GPL 2+
Build system: r
Synopsis: Data Sets from "Forecasting with Exponential Smoothing"
Description:

Data sets from the book "Forecasting with exponential smoothing: the state space approach" by Hyndman, Koehler, Ord and Snyder (Springer, 2008).

r-errors 0.4.4
Channel: guix-cran
Location: guix-cran/packages/e.scm (guix-cran packages e)
Home page: https://r-quantities.github.io/errors/
Licenses: Expat
Build system: r
Synopsis: Uncertainty Propagation for R Vectors
Description:

Support for measurement errors in R vectors, matrices and arrays: automatic uncertainty propagation and reporting. Documentation about errors is provided in the paper by Ucar, Pebesma & Azcorra (2018, <doi:10.32614/RJ-2018-075>), included in this package as a vignette; see citation("errors") for details.

Page: 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887
Total results: 21283