Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides functions to align curves and to compute mean curves based on the elastic distance defined in the square-root-velocity framework. For more details on this framework see Srivastava and Klassen (2016, <doi:10.1007/978-1-4939-4020-2>). For more theoretical details on our methods and algorithms see Steyer et al. (2023, <doi:10.1111/biom.13706>) and Steyer et al. (2023, <arXiv:2305.02075>).
Utilities for managing egocentrically sampled network data and a wrapper around the ergm package to facilitate ERGM inference and simulation from such data. See Krivitsky and Morris (2017) <doi:10.1214/16-AOAS1010>.
An implementation of Extreme Bounds Analysis (EBA), a global sensitivity analysis that examines the robustness of determinants in regression models. The package supports both Leamer's and Sala-i-Martin's versions of EBA, and allows users to customize all aspects of the analysis.
This extension of the pattern-oriented modeling framework of the poems package provides a collection of modules and functions customized for modeling disease transmission on a population scale in a spatiotemporally explicit manner. This includes seasonal time steps, dispersal functions that track disease state of dispersers, results objects that store disease states, and a population simulator that includes disease dynamics.
This is a port of Fortran ETERNA 3.4 <http://igets.u-strasbg.fr/soft_and_tool.php> by H.G. Wenzel for calculating synthetic Earth tides using the Hartmann and Wenzel (1994) <doi:10.1029/95GL03324> or Kudryavtsev (2004) <doi:10.1007/s00190-003-0361-2> tidal catalogs.
Calculates the (approximate) effective number of clusters for a regression model, as described in Carter, Schnepel, and Steigerwald (2017) <doi:10.1162/REST_a_00639>. The effective number of clusters is a statistic to assess the reliability of asymptotic inference when sampling or treatment assignment is clustered. Methods are implemented for stats::lm(), plm::plm(), and fixest::feols(). There is also a formula method.
This is a package for exact Confidence Intervals for the difference between two independent or dependent proportions.
The confusion matrix (CM) is used to get a classifier's evaluation measure in order to select a method among many. A stochastic matrix and its transformation are computed from the CM. The eigenvalues of the transformed symmetric matrix are used to get an entropy which appears to be a good evaluation measure. Many other measures, commonly used, are provided for comparison purpose.
Prints out information about the R working environment (system, R version,loaded and attached packages and versions) from a single function "env_doc()". Optionally adds information on git repository, tags, commits and remotes (if available).
Tool for Environment-Wide Association Studies (EnvWAS / EWAS) which are repeated analysis. It includes three functions. One function for linear regression, a second for logistic regression and a last one for generalized linear models.
Rolling and expanding window approaches to assessing abundance based early warning signals, non-equilibrium resilience measures, and machine learning. See Dakos et al. (2012) <doi:10.1371/journal.pone.0041010>, Deb et al. (2022) <doi:10.1098/rsos.211475>, Drake and Griffen (2010) <doi:10.1038/nature09389>, Ushio et al. (2018) <doi:10.1038/nature25504> and Weinans et al. (2021) <doi:10.1038/s41598-021-87839-y> for methodological details. Graphical presentation of the outputs are also provided for clear and publishable figures. Visit the EWSmethods website for more information, and tutorials.
This package provides a tool that allows users to generate various indices for evaluating statistical models. The fitstat() function computes indices based on the fitting data. The valstat() function computes indices based on the validation data set. Both fitstat() and valstat() will return 16 indices SSR: residual sum of squares, TRE: total relative error, Bias: mean bias, MRB: mean relative bias, MAB: mean absolute bias, MAPE: mean absolute percentage error, MSE: mean squared error, RMSE: root mean square error, Percent.RMSE: percentage root mean squared error, R2: coefficient of determination, R2adj: adjusted coefficient of determination, APC: Amemiya's prediction criterion, logL: Log-likelihood, AIC: Akaike information criterion, AICc: corrected Akaike information criterion, BIC: Bayesian information criterion, HQC: Hannan-Quin information criterion. The lower the better for the SSR, TRE, Bias, MRB, MAB, MAPE, MSE, RMSE, Percent.RMSE, APC, AIC, AICc, BIC and HQC indices. The higher the better for R2 and R2adj indices. Petre Stoica, P., Selén, Y. (2004) <doi:10.1109/MSP.2004.1311138>\n Zhou et al. (2023) <doi:10.3389/fpls.2023.1186250>\n Ogana, F.N., Ercanli, I. (2021) <doi:10.1007/s11676-021-01373-1>\n Musabbikhah et al. (2019) <doi:10.1088/1742-6596/1175/1/012270>.
This package provides a set of tools to perform Ecological Niche Modeling with presence-absence data. It includes algorithms for data partitioning, model fitting, calibration, evaluation, selection, and prediction. Other functions help to explore signals of ecological niche using univariate and multivariate analyses, and model features such as variable response curves and variable importance. Unique characteristics of this package are the ability to exclude models with concave quadratic responses, and the option to clamp model predictions to specific variables. These tools are implemented following principles proposed in Cobos et al., (2022) <doi:10.17161/bi.v17i.15985>, Cobos et al., (2019) <doi:10.7717/peerj.6281>, and Peterson et al., (2008) <doi:10.1016/j.ecolmodel.2007.11.008>.
Simulation of Electric Vehicles charging sessions using Gaussian models, together with time-series power demand calculations.
This package provides a goodness-of-fit test for elliptical distributions with diagnostic capabilities. Gilles R. Ducharme, Pierre Lafaye de Micheaux (2020) <doi:10.1016/j.jmva.2020.104602>.
This package provides convenience functions for researching experiences including user, customer, patient, employee, and other human experiences. It provides a suite of tools to simplify data exploration such as benchmarking, comparing groups, and checking for differences. The outputs translate statistical approaches in applied experience research to human readable output.
The purpose of Early Warning Systems (EWS) is to detect accurately the occurrence of a crisis, which is represented by a binary variable which takes the value of one when the event occurs, and the value of zero otherwise. EWS are a toolbox for policymakers to prevent or attenuate the impact of economic downturns. Modern EWS are based on the econometric framework of Kauppi and Saikkonen (2008) <doi:10.1162/rest.90.4.777>. Specifically, this framework includes four dichotomous models, relying on a logit approach to model the relationship between yield spreads and future recessions, controlling for recession risk factors. These models can be estimated in a univariate or a balanced panel framework as in Candelon, Dumitrescu and Hurlin (2014) <doi:10.1016/j.ijforecast.2014.03.015>. This package provides both methods for estimating these models and a dataset covering 13 OECD countries over a period of 45 years. In addition, this package also provides methods for the analysis of the propagation mechanisms of an exogenous shock, as well as robust confidence intervals for these response functions using a block-bootstrap method as in Lajaunie (2021). This package constitutes a useful toolbox (data and functions) for scholars as well as policymakers.
The EQ-5D is a widely-used standarized instrument for measuring Health Related Quality Of Life (HRQOL), developed by the EuroQol group <https://euroqol.org/>. It assesses five dimensions; mobility, self-care, usual activities, pain/discomfort, and anxiety/depression, using either a three-level (EQ-5D-3L) or five-level (EQ-5D-5L) scale. Scores from these dimensions are commonly converted into a single utility index using country-specific value sets, which are critical in clinical and economic evaluations of healthcare and in population health surveys. The eq5dsuite package enables users to calculate utility index values for the EQ-5D instruments, including crosswalk utilities using the original crosswalk developed by van Hout et al. (2012) <doi:10.1016/j.jval.2012.02.008> (mapping EQ-5D-5L responses to EQ-5D-3L index values), or the recently developed reverse crosswalk by van Hout et al. (2021) <doi:10.1016/j.jval.2021.03.009> (mapping EQ-5D-3L responses to EQ-5D-5L index values). Users are allowed to add and/or remove user-defined value sets. Additionally, the package provides tools to analyze EQ-5D data according to the recommended guidelines outlined in "Methods for Analyzing and Reporting EQ-5D data" by Devlin et al. (2020) <doi:10.1007/978-3-030-47622-9>.
Analysis of dichotomous and polytomous response data using the explanatory item response modeling framework, as described in Bulut, Gorgun, & Yildirim-Erbasli (2021) <doi:10.3390/psych3030023>, Stanke & Bulut (2019) <doi:10.21449/ijate.515085>, and De Boeck & Wilson (2004) <doi:10.1007/978-1-4757-3990-9>. Generalized linear mixed modeling is used for estimating the effects of item-related and person-related variables on dichotomous and polytomous item responses.
The production of certified reference materials (CRMs) requires various statistical tests depending on the task and recorded data to ensure that reported values of CRMs are appropriate. Often these tests are performed according to the procedures described in ISO GUIDE 35:2017'. The eCerto package contains a Shiny app which provides functionality to load, process, report and backup data recorded during CRM production and facilitates following the recommended procedures. It is described in Lisec et al (2023) <doi:10.1007/s00216-023-05099-3> and can also be accessed online <https://apps.bam.de/shn00/eCerto/> without package installation.
Fit models of modularity to morphological landmarks. Perform model selection on results. Fit models with a single within-module correlation or with separate within-module correlations fitted to each module.
The purpose of this library is to compute the optimal charging cost function for a electric vehicle (EV). It is well known that the charging function of a EV is a concave function that can be approximated by a piece-wise linear function, so bigger the state of charge, slower the charging process is. Moreover, the other important function is the one that gives the electricity price. This function is usually step-wise, since depending on the time of the day, the price of the electricity is different. Then, the problem of charging an EV to a certain state of charge is not trivial. This library implements an algorithm to compute the optimal charging cost function, that is, it plots for a given state of charge r (between 0 and 1) the minimum cost we need to pay in order to charge the EV to that state of charge r. The details of the algorithm are described in González-Rodrà guez et at (2023) <https://inria.hal.science/hal-04362876v1>.
DNA methylation (6mA) is a major epigenetic process by which alteration in gene expression took place without changing the DNA sequence. Predicting these sites in-vitro is laborious, time consuming as well as costly. This EpiSemble package is an in-silico pipeline for predicting DNA sequences containing the 6mA sites. It uses an ensemble-based machine learning approach by combining Support Vector Machine (SVM), Random Forest (RF) and Gradient Boosting approach to predict the sequences with 6mA sites in it. This package has been developed by using the concept of Chen et al. (2019) <doi:10.1093/bioinformatics/btz015>.
Fits extreme value mixture models, which are models for tails not requiring selection of a threshold, for continuous data. It includes functions for model comparison, estimation of quantity of interest in extreme value analysis and plotting. Reference: CN Behrens, HF Lopes, D Gamerman (2004) <doi:10.1191/1471082X04st075oa>. FF do Nascimento, D. Gamerman, HF Lopes <doi:10.1007/s11222-011-9270-z>.