Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides tools for simulating from discrete-time individual level models for infectious disease data analysis. This epidemic model class contains spatial and contact-network based models with two disease types: Susceptible-Infectious (SI) and Susceptible-Infectious-Removed (SIR).
The goal of this package is to provide an easy to use, fast and scalable exhaustive search framework. Exhaustive feature selections typically require a very large number of models to be fitted and evaluated. Execution speed and memory management are crucial factors here. This package provides solutions for both. Execution speed is optimized by using a multi-threaded C++ backend, and memory issues are solved by by only storing the best results during execution and thus keeping memory usage constant.
This package provides tools for calculating evolvability parameters from estimated G-matrices as defined in Hansen and Houle (2008) <doi:10.1111/j.1420-9101.2008.01573.x> and fits phylogenetic comparative models that link the rate of evolution of a trait to the state of another evolving trait (see Hansen et al. 2021 Systematic Biology <doi:10.1093/sysbio/syab079>). The package was released with Bolstad et al. (2014) <doi:10.1098/rstb.2013.0255>, which contains some examples of use.
Description: Application of empirical mode decomposition based support vector regression model for nonlinear and non stationary univariate time series forecasting. For method details see (i) Choudhury (2019) <http://krishi.icar.gov.in/jspui/handle/123456789/44873>; (ii) Das (2020) <http://krishi.icar.gov.in/jspui/handle/123456789/43174>; (iii) Das (2023) <http://krishi.icar.gov.in/jspui/handle/123456789/77772>.
Finding life outside the planet Earth several is the ultimate goal of an astrobiologist. Using known astronomical measurements and assumptions the probability of extraterrestrial life existence could be estimated. Equations such as the Drake equation (1961) as stated in the paper of Molina (2019) <arXiv:1912.01783>, Seager (2013) <https://www.space.com/22648-drake-equation-alien-life-seager.html> and Foucher et al, (2017) <doi:10.3390/life7040040> are included in the extraterrestrial package.
Computes empirical Bayes confidence estimators and confidence intervals in a normal means model. The intervals are robust in the sense that they achieve correct coverage regardless of the distribution of the means. If the means are treated as fixed, the intervals have an average coverage guarantee. The implementation is based on Armstrong, Kolesár and Plagborg-Møller (2020) <arXiv:2004.03448>.
Tool for Environment-Wide Association Studies (EnvWAS / EWAS) which are repeated analysis. It includes three functions. One function for linear regression, a second for logistic regression and a last one for generalized linear models.
The purpose of this package is to estimate the potential of urban agriculture to contribute to addressing several urban challenges at the city-scale. Within this aim, we selected 8 indicators directly related to one or several urban challenges. Also, a function is provided to compute new scenarios of urban agriculture. Methods are described by Pueyo-Ros, Comas & Corominas (2023) <doi:10.12688/openreseurope.16054.1>.
Support functions for R-based EQUAL-STATS software which automatically classifies the data and performs appropriate statistical tests. EQUAL-STATS software is a shiny application with an user-friendly interface to perform complex statistical analysis. Gurusamy,K (2024)<doi:10.5281/zenodo.13354162>.
This package implements the Edwards (1997) <doi:10.1002/j.1551-8833.1997.tb08229.x> Langmuir-based semi-empirical coagulation model, which predicts the concentration of organic carbon remaining in water after treatment with an Al- or Fe-based coagulant. Data and methods are provided to optimise empirical coefficients.
Combine pieces of evidence in the form of uncertainty representations.
Utilities for managing egocentrically sampled network data and a wrapper around the ergm package to facilitate ERGM inference and simulation from such data. See Krivitsky and Morris (2017) <doi:10.1214/16-AOAS1010>.
Ensemble correlation-based low-rank matrix completion method (ECLRMC) is an extension to the LRMC based methods. Traditionally, the LRMC based methods give identical importance to the whole data which results in emphasizing on the commonality of the data and overlooking the subtle but crucial differences. This method aims to overcome the equality assumption problem that exists in the current LRMS based methods. Ensemble correlation-based low-rank matrix completion (ECLRMC) takes consideration of the specific characteristic of each sample and performs LRMC on the set of samples with a strong correlation. It uses an ensemble learning method to improve the imputation performance. Since each sample is analyzed independently this method can be parallelized by distributing imputation across many computation units or GPU platforms. This package provides three different methods (LRMC, CLRMC and ECLRMC) for data imputation. There is also an NRMS function for evaluating the result. Chen, Xiaobo, et al (2017) <doi:10.1016/j.knosys.2017.06.010>.
This package provides a series of R functions that come in handy while working with metabarcoding data. The reasoning of doing this is to have the same functions we use all the time stored in a curated, reproducible way. In a way it is all about putting together the grammar of the tidyverse from Wickham et al.(2019) <doi:10.21105/joss.01686> with the functions we have used in community ecology compiled in packages like vegan from Dixon (2003) <doi:10.1111/j.1654-1103.2003.tb02228.x> and phyloseq McMurdie & Holmes (2013) <doi:10.1371/journal.pone.0061217>. The package includes functions to read sequences from FAST(A/Q) into a tibble ('fasta_reader and fastq_reader'), to process cutadapt Martin (2011) <doi:10.14806/ej.17.1.200> info-file output. When it comes to sequence counts across samples, the package works with the long format in mind (a three column tibble with Sample, Sequence and counts ), with functions to move from there to the wider format.
Production efficiency and economic efficiency are crucial concepts in agriculture/horticulture for sustainable and profitable practices. It helps to determine the optimal use of resources to maximize outputs and profitability. Production efficiency focuses on the optimal use of resources to produce goods, while economic efficiency ensures these goods are produced and allocated in a way that maximizes economic welfare. Production efficiency and economic efficiency are calculated with the help of the formula given by (Kumar et al., 2017) <doi:10.21921/jas.v4i04.10202>.
Fast and memory-less computation of the energy statistics related quantities for vectors and matrices. References include: Szekely G. J. and Rizzo M. L. (2014), <doi:10.1214/14-AOS1255>. Szekely G. J. and Rizzo M. L. (2023), <ISBN:9781482242744>. Tsagris M. and Papadakis M. (2025). <doi:10.48550/arXiv.2501.02849>.
Biotracers and stomach content analyses are combined in a Bayesian hierarchical model to estimate a probabilistic topology matrix (all trophic link probabilities) and a diet matrix (all diet proportions). The package relies on the JAGS software and the jagsUI package to run a Markov chain Monte Carlo approximation of the different variables.
Create causal models for use in epidemiological studies, including sufficient-component cause models as introduced by Rothman (1976) <doi:10.1093/oxfordjournals.aje.a112335>.
This package provides a set of functions for organising and analysing datasets from experiments run using Eyelink eye-trackers. Organising functions help to clean and prepare eye-tracking datasets for analysis, and mark up key events such as display changes and responses made by participants. Analysing functions help to create means for a wide range of standard measures (such as mean fixation durations'), which can then be fed into the appropriate statistical analyses and graphing packages as necessary.
This package provides implementations of computationally efficient maximum likelihood parameter estimation algorithms for models representing linear dynamical systems. Currently, two such algorithms (one offline and one online) are implemented for the single-output cumulative structural equation model with an additive-noise output measurement equation and assumptions of normality and independence. The corresponding scientific papers are referenced in the descriptions of the functions implementing these algorithms.
Collection of convenience functions to make working with administrative records easier and more consistent. Includes functions to clean strings, and identify cut points. Also includes three example data sets of administrative education records for learning how to process records with errors.
This package provides a Shiny web application for energy industry analytics. Take an overview of the industry, measure Key Performance Indicators, identify changes in the industry over time, and discover new relationships in the data.
This package provides tools for simulating draws from continuous time processes with well-defined exponential family random graph (ERGM) equilibria, i.e. ERGM generating processes (EGPs). A number of EGPs are supported, including the families identified in Butts (2023) <doi:10.1080/0022250X.2023.2180001>, as are functions for hazard calculation and timing calibration.
Application of empirical mode decomposition based artificial neural network model for nonlinear and non stationary univariate time series forecasting. For method details see (i) Choudhury (2019) <https://www.indianjournals.com/ijor.aspx?target=ijor:ijee3&volume=55&issue=1&article=013>; (ii) Das (2020) <https://www.indianjournals.com/ijor.aspx?target=ijor:ijee3&volume=56&issue=2&article=002>.