Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides various tools for preprocessing Emission-Excitation-Matrix (EEM) for Parallel Factor Analysis (PARAFAC). Different methods are also provided to calculate common metrics such as humification index and fluorescence index.
This package provides methods to deal with the free antiassociative algebra over the reals with an arbitrary number of indeterminates. Antiassociativity means that (xy)z = -x(yz). Antiassociative algebras are nilpotent with nilindex four (Remm, 2022, <doi:10.48550/arXiv.2202.10812>) and this drives the design and philosophy of the package. Methods are defined to create and manipulate arbitrary elements of the antiassociative algebra, and to extract and replace coefficients. A vignette is provided.
Perform analysis of variance and other important complementary analyses. The functions are easy to use. Performs analysis in various designs, with balanced and unbalanced data.
Estimates an ecological niche using occurrence data, covariates, and kernel density-based estimation methods. For a single species with presence and absence data, the envi package uses the spatial relative risk function that is estimated using the sparr package. Details about the sparr package methods can be found in the tutorial: Davies et al. (2018) <doi:10.1002/sim.7577>. Details about kernel density estimation can be found in J. F. Bithell (1990) <doi:10.1002/sim.4780090616>. More information about relative risk functions using kernel density estimation can be found in J. F. Bithell (1991) <doi:10.1002/sim.4780101112>.
This is a collection of assorted functions and examples collected from various projects. Currently we have functionalities for simplifying overlapping time intervals, Charlson comorbidity score constructors for Danish data, getting frequency for multiple variables, getting standardized output from logistic and log-linear regressions, sibling design linear regression functionalities a method for calculating the confidence intervals for functions of parameters from a GLM, Bayes equivalent for hypothesis testing with asymptotic Bayes factor, and several help functions for generalized random forest analysis using grf'.
An R-based application for exploratory data analysis of global EvapoTranspiration (ET) datasets. evapoRe enables users to download, validate, visualize, and analyze multi-source ET data across various spatio-temporal scales. Also, the package offers calculation methods for estimating potential ET (PET), including temperature-based, combined type, and radiation-based approaches described in : Oudin et al., (2005) <doi:10.1016/j.jhydrol.2004.08.026>. evapoRe supports hydrological modeling, climate studies, agricultural research, and other data-driven fields by facilitating access to ET data and offering powerful analysis capabilities. Users can seamlessly integrate the package into their research applications and explore diverse ET data at different resolutions.
This package provides tools for simulating mathematical models of infectious disease dynamics. Epidemic model classes include deterministic compartmental models, stochastic individual-contact models, and stochastic network models. Network models use the robust statistical methods of exponential-family random graph models (ERGMs) from the Statnet suite of software packages in R. Standard templates for epidemic modeling include SI, SIR, and SIS disease types. EpiModel features an API for extending these templates to address novel scientific research aims. Full methods for EpiModel are detailed in Jenness et al. (2018, <doi:10.18637/jss.v084.i08>).
Highest averages & largest remainders allocating seats methods and several party system scores. Implemented highest averages allocating seats methods are D'Hondt, Webster, Danish, Imperiali, Hill-Huntington, Dean, Modified Sainte-Lague, equal proportions and Adams. Implemented largest remainders allocating seats methods are Hare, Droop, Hangenbach-Bischoff, Imperial, modified Imperial and quotas & remainders. The main advantage of this package is that ties are always reported and not incorrectly allocated. Party system scores provided are competitiveness, concentration, effective number of parties, party nationalization score, party system nationalization score and volatility. References: Gallagher (1991) <doi:10.1016/0261-3794(91)90004-C>. Norris (2004, ISBN:0-521-82977-1). Laakso & Taagepera (1979) <https://escholarship.org/uc/item/703827nv>. Jones & Mainwaring (2003) <https://kellogg.nd.edu/sites/default/files/old_files/documents/304_0.pdf>. Pedersen (1979) <https://janda.org/c24/Readings/Pedersen/Pedersen.htm>. Golosov (2010) <doi:10.1177/1354068809339538>. Golosov (2014) <doi:10.1177/1354068814549342>.
The Explainable Ensemble Trees e2tree approach has been proposed by Aria et al. (2024) <doi:10.1007/s00180-022-01312-6>. It aims to explain and interpret decision tree ensemble models using a single tree-like structure. e2tree is a new way of explaining an ensemble tree trained through randomForest or xgboost packages.
This package implements the Bayesian and likelihood methods proposed in Imai, Lu, and Strauss (2008 <doi:10.1093/pan/mpm017>) and (2011 <doi:10.18637/jss.v042.i05>) for ecological inference in 2 by 2 tables as well as the method of bounds introduced by Duncan and Davis (1953). The package fits both parametric and nonparametric models using either the Expectation-Maximization algorithms (for likelihood models) or the Markov chain Monte Carlo algorithms (for Bayesian models). For all models, the individual-level data can be directly incorporated into the estimation whenever such data are available. Along with in-sample and out-of-sample predictions, the package also provides a functionality which allows one to quantify the effect of data aggregation on parameter estimation and hypothesis testing under the parametric likelihood models.
Genotyping the population using next generation sequencing data is essentially important for the rare variant detection. In order to distinguish the genomic structural variation from sequencing error, we propose a statistical model which involves the genotype effect through a latent variable to depict the distribution of non-reference allele frequency data among different samples and different genome loci, while decomposing the sequencing error into sample effect and positional effect. An ECM algorithm is implemented to estimate the model parameters, and then the genotypes and SNPs are inferred based on the empirical Bayes method.
The goal of this package is to provide an easy to use, fast and scalable exhaustive search framework. Exhaustive feature selections typically require a very large number of models to be fitted and evaluated. Execution speed and memory management are crucial factors here. This package provides solutions for both. Execution speed is optimized by using a multi-threaded C++ backend, and memory issues are solved by by only storing the best results during execution and thus keeping memory usage constant.
Commonly used classification and regression tree methods like the CART algorithm are recursive partitioning methods that build the model in a forward stepwise search. Although this approach is known to be an efficient heuristic, the results of recursive tree methods are only locally optimal, as splits are chosen to maximize homogeneity at the next step only. An alternative way to search over the parameter space of trees is to use global optimization methods like evolutionary algorithms. The evtree package implements an evolutionary algorithm for learning globally optimal classification and regression trees in R. CPU and memory-intensive tasks are fully computed in C++ while the partykit package is leveraged to represent the resulting trees in R, providing unified infrastructure for summaries, visualizations, and predictions.
This package provides tools to fit Mixture Cure Rate models via the Expectation-Maximization (EM) algorithm, allowing for flexible link functions in the cure component and various survival distributions in the latency part. The package supports user-specified link functions, includes methods for parameter estimation and model diagnostics, and provides residual analysis tailored for cure models. The classical theory methods used are described in Berkson, J. and Gage, R. P. (1952) <doi:10.2307/2281318>, Dempster, A. P., Laird, N. M. and Rubin, D. B. (1977) <https://www.jstor.org/stable/2984875>, Bazán, J., Torres-Avilés, F., Suzuki, A. and Louzada, F. (2017)<doi:10.1002/asmb.2215>.
Current layout algorithms such as Kamada Kawai do not take into consideration disjoint clusters in a network, often resulting in a high overlap among the clusters, resulting in a visual â hairballâ that often is uninterpretable. The ExplodeLayout algorithm takes as input (1) an edge list of a unipartite or bipartite network, (2) node layout coordinates (x, y) generated by a layout algorithm such as Kamada Kawai, (3) node cluster membership generated from a clustering algorithm such as modularity maximization, and (4) a radius to enable the node clusters to be â explodedâ to reduce their overlap. The algorithm uses these inputs to generate new layout coordinates of the nodes which â explodesâ the clusters apart, such that the edge lengths within the clusters are preserved, while the edge lengths between clusters are recalculated. The modified network layout with nodes and edges are displayed in two dimensions. The user can experiment with different explode radii to generate a layout which has sufficient separation of clusters, while reducing the overall layout size of the network. This package is a basic version of an earlier version called [epl]<https://github.com/UTMB-DIVA-Lab/epl> that searched for an optimal explode radius, and offered multiple ways to separate clusters in a network (Bhavnani et al(2017) <https://pmc.ncbi.nlm.nih.gov/articles/PMC5543384/>). The example dataset is for a bipartite network, but the algorithm can work also for unipartite networks.
Perform a Bayesian estimation of the exploratory deterministic input, noisy and gate (EDINA) cognitive diagnostic model described by Chen et al. (2018) <doi:10.1007/s11336-017-9579-4>.
Fit the hierarchical and non-hierarchical Bayesian measurement models proposed by Bullock, Imai, and Shapiro (2011) <DOI:10.1093/pan/mpr031> to analyze endorsement experiments. Endorsement experiments are a survey methodology for eliciting truthful responses to sensitive questions. This methodology is helpful when measuring support for socially sensitive political actors such as militant groups. The model is fitted with a Markov chain Monte Carlo algorithm and produces the output containing draws from the posterior distribution.
Gas/Liquid Chromatography-Mass Spectrometer(GC/LC-MS) Data Analysis for Environmental Science. This package covered topics such molecular isotope ratio, matrix effects and Short-Chain Chlorinated Paraffins analysis etc. in environmental analysis.
This package provides a comprehensive collection of datasets related to education, covering topics such as student performance, learning methods, test scores, absenteeism, and other educational metrics. This package serves as a resource for educational researchers, data analysts, and statisticians to explore and analyze data in the field of education.
The Economic Policy Institute (<https://www.epi.org/>) provides researchers, media, and the public with easily accessible, up-to-date, and comprehensive historical data on the American labor force. It is compiled from Economic Policy Institute analysis of government data sources. Use it to research wages, inequality, and other economic indicators over time and among demographic groups. Data is usually updated monthly.
This package provides a collection of functions and jamovi module for the estimation approach to inferential statistics, the approach which emphasizes effect sizes, interval estimates, and meta-analysis. Nearly all functions are based on statpsych and metafor'. This package is still under active development, and breaking changes are likely, especially with the plot and hypothesis test functions. Data sets are included for all examples from Cumming & Calin-Jageman (2024) <ISBN:9780367531508>.
This package contains a large number of the goodness-of-fit tests for the Exponential and Weibull distributions classified into families: the tests based on the empirical distribution function, the tests based on the probability plot, the tests based on the normalized spacings, the tests based on the Laplace transform and the likelihood based tests.
This package provides functions for assigning Clarke or Parkes (Consensus) error grid zones to blood glucose values, and for plotting both types of error grids in both mg/mL and mmol/L units.
Generate citations and references for R packages from CRAN or Bioconductor. Supports RIS and BibTeX formats with automatic DOI retrieval from GitHub repositories and published papers. Includes command-line interface for batch processing.