Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides a variety of methods are provided to estimate and visualize distributional differences in terms of effect sizes. Particular emphasis is upon evaluating differences between two or more distributions across the entire scale, rather than at a single point (e.g., differences in means). For example, Probability-Probability (PP) plots display the difference between two or more distributions, matched by their empirical CDFs (see Ho and Reardon, 2012; <doi:10.3102/1076998611411918>), allowing for examinations of where on the scale distributional differences are largest or smallest. The area under the PP curve (AUC) is an effect-size metric, corresponding to the probability that a randomly selected observation from the x-axis distribution will have a higher value than a randomly selected observation from the y-axis distribution. Binned effect size plots are also available, in which the distributions are split into bins (set by the user) and separate effect sizes (Cohen's d) are produced for each bin - again providing a means to evaluate the consistency (or lack thereof) of the difference between two or more distributions at different points on the scale. Evaluation of empirical CDFs is also provided, with built-in arguments for providing annotations to help evaluate distributional differences at specific points (e.g., semi-transparent shading). All function take a consistent argument structure. Calculation of specific effect sizes is also possible. The following effect sizes are estimable: (a) Cohen's d, (b) Hedges g, (c) percentage above a cut, (d) transformed (normalized) percentage above a cut, (e) area under the PP curve, and (f) the V statistic (see Ho, 2009; <doi:10.3102/1076998609332755>), which essentially transforms the area under the curve to standard deviation units. By default, effect sizes are calculated for all possible pairwise comparisons, but a reference group (distribution) can be specified.
Likelihood-based approaches to estimate linear regression parameters and treatment effects in the presence of endogeneity. Specifically, this package includes James Heckman's classical simultaneous equation models-the sample selection model for outcome selection bias and hybrid model with structural shift for endogenous treatment. For more information, see the seminal paper of Heckman (1978) <DOI:10.3386/w0177> in which the details of these models are provided. This package accommodates repeated measures on subjects with a working independence approach. The hybrid model further accommodates treatment effect modification.
This package implements three complementary pipelines for causal analysis on macroeconomic time series: (1) Error-Correction Models with Multivariate Adaptive Regression Splines (ECM-MARS), (2) Bayesian Structural Time Series (BSTS), and (3) Bayesian GLM with AR(1) errors validated with Leave-Future-Out (LFO). Heavy backends (Stan) are optional and never used in examples or tests.
Estimation of epidemiological parameters with Laplacian-P-splines following the methodology of Gressani et al. (2022) <doi:10.1371/journal.pcbi.1010618>.
Correlation chart of two set (x and y) of data. Using Quantiles. Visualize the effect of factor.
This package provides a dataframe-friendly implementation of ComBat Harmonization which uses an empirical Bayesian framework to remove batch effects. Johnson WE & Li C (2007) <doi:10.1093/biostatistics/kxj037> "Adjusting batch effects in microarray expression data using empirical Bayes methods." Fortin J-P, Cullen N, Sheline YI, Taylor WD, Aselcioglu I, Cook PA, Adams P, Cooper C, Fava M, McGrath PJ, McInnes M, Phillips ML, Trivedi MH, Weissman MM, & Shinohara RT (2017) <doi:10.1016/j.neuroimage.2017.11.024> "Harmonization of cortical thickness measurements across scanners and sites." Fortin J-P, Parker D, Tun<e7> B, Watanabe T, Elliott MA, Ruparel K, Roalf DR, Satterthwaite TD, Gur RC, Gur RE, Schultz RT, Verma R, & Shinohara RT (2017) <doi:10.1016/j.neuroimage.2017.08.047> "Harmonization of multi-site diffusion tensor imaging data.".
Simulation-based evidence accumulation models for analyzing responses and reaction times in single- and multi-response tasks. The package includes simulation engines for five representative models: the Diffusion Decision Model (DDM), Leaky Competing Accumulator (LCA), Linear Ballistic Accumulator (LBA), Racing Diffusion Model (RDM), and Levy Flight Model (LFM), and extends these frameworks to multi-response settings. The package supports user-defined functions for item-level parameterization and the incorporation of covariates, enabling flexible customization and the development of new model variants based on existing architectures. Inference is performed using simulation-based methods, including Approximate Bayesian Computation (ABC) and Amortized Bayesian Inference (ABI), which allow parameter estimation without requiring tractable likelihood functions. In addition to core inference tools, the package provides modules for parameter recovery, posterior predictive checks, and model comparison, facilitating the study of a wide range of cognitive processes in tasks involving perceptual decision making, memory retrieval, and value-based decision making. Key methods implemented in the package are described in Ratcliff (1978) <doi:10.1037/0033-295X.85.2.59>, Usher and McClelland (2001) <doi:10.1037/0033-295X.108.3.550>, Brown and Heathcote (2008) <doi:10.1016/j.cogpsych.2007.12.002>, Tillman, Van Zandt and Logan (2020) <doi:10.3758/s13423-020-01719-6>, Wieschen, Voss and Radev (2020) <doi:10.20982/tqmp.16.2.p120>, Csilléry, François and Blum (2012) <doi:10.1111/j.2041-210X.2011.00179.x>, Beaumont (2019) <doi:10.1146/annurev-statistics-030718-105212>, and Sainsbury-Dale, Zammit-Mangion and Huser (2024) <doi:10.1080/00031305.2023.2249522>.
Support in preparing a raw ESM dataset for statistical analysis. Preparation includes the handling of errors (mostly due to technological reasons) and the generating of new variables that are necessary and/or helpful in meeting the conditions when statistically analyzing ESM data. The functions in esmprep are meant to hierarchically lead from bottom, i.e. the raw (separated) ESM dataset(s), to top, i.e. a single ESM dataset ready for statistical analysis. This hierarchy evolved out of my personal experience in working with ESM data.
Enables launching a series of simulations of a computer code from the R session, and to retrieve the simulation outputs in an appropriate format for post-processing treatments. Five sequential sampling schemes and three coupled-to-MCMC schemes are implemented.
Evaluate a function over a data frame of expressions.
This package contains all data sets for Exam PA: Predictive Analytics at <https://exampa.net/>.
Builds contingency tables that cross-tabulate multiple categorical variables and also calculates various summary measures. Export to a variety of formats is supported, including: HTML', LaTeX', and Excel'.
Bayesian estimation of spatial weight matrices in spatial econometric panel models. Allows for estimation of spatial autoregressive (SAR), spatial error (SEM), spatial Durbin (SDM), spatial error Durbin (SDEM) and spatially lagged explanatory variable (SLX) type specifications featuring an unknown spatial weight matrix. Methodological details are given in Krisztin and Piribauer (2022) <doi:10.1080/17421772.2022.2095426>.
This package implements the Enhanced Portfolio Optimization (EPO) method as described in Pedersen, Babu and Levine (2021) <doi:10.2139/ssrn.3530390>.
This package provides empirical likelihood-based methods for the inference of variance components in linear mixed-effects models.
Clinical coding and diagnosis of patients with kidney using clinical practice guidelines. The guidelines used are the evidence-based KDIGO guidelines, see <https://kdigo.org/guidelines/> for more information. This package covers acute kidney injury (AKI), anemia, and chronic kidney disease (CKD).
This package implements choice models based on economic theory, including estimation using Markov chain Monte Carlo (MCMC), prediction, and more. Its usability is inspired by ideas from tidyverse'. Models include versions of the Hierarchical Multinomial Logit and Multiple Discrete-Continous (Volumetric) models with and without screening. The foundations of these models are described in Allenby, Hardt and Rossi (2019) <doi:10.1016/bs.hem.2019.04.002>. Models with conjunctive screening are described in Kim, Hardt, Kim and Allenby (2022) <doi:10.1016/j.ijresmar.2022.04.001>. Models with set-size variation are described in Hardt and Kurz (2020) <doi:10.2139/ssrn.3418383>.
Fits the space-time Epidemic Type Aftershock Sequence ('ETAS') model to earthquake catalogs using a stochastic declustering approach. The ETAS model is a spatio-temporal marked point process model and a special case of the Hawkes process. The package is based on a Fortran program by Jiancang Zhuang (available at <https://bemlar.ism.ac.jp/zhuang/software.html>), which is modified and translated into C++ and C such that it can be called from R. Parallel computing with OpenMP is possible on supported platforms.
This package implements various quality evaluation statistics to assess the value of plant germplasm core collections using qualitative and quantitative phenotypic trait data according to Odong et al. (2015) <doi:10.1007/s00122-012-1971-y>.
We provide a non-parametric and a parametric approach to investigate the equivalence (or non-inferiority) of two survival curves, obtained from two given datasets. The test is based on the creation of confidence intervals at pre-specified time points. For the non-parametric approach, the curves are given by Kaplan-Meier curves and the variance for calculating the confidence intervals is obtained by Greenwood's formula. The parametric approach is based on estimating the underlying distribution, where the user can choose between a Weibull, Exponential, Gaussian, Logistic, Log-normal or a Log-logistic distribution. Estimates for the variance for calculating the confidence bands are obtained by a (parametric) bootstrap approach. For this bootstrap censoring is assumed to be exponentially distributed and estimates are obtained from the datasets under consideration. All details can be found in K.Moellenhoff and A.Tresch: Survival analysis under non-proportional hazards: investigating non-inferiority or equivalence in time-to-event data <arXiv:2009.06699>.
This package provides a small set of functions for managing R environments, with defaults designed to encourage usage patterns that scale well to larger code bases. It provides: import_from(), a flexible way to assign bindings that defaults to the current environment; include(), a vectorized alternative to base::source() that also default to the current environment; and attach_eval() and attach_source(), a way to evaluate expressions in attached environments. Together, these (and other) functions pair to provide a robust alternative to base::library() and base::source().
Package provides a set of tools for robust estimation and inference for probit model with endogenous covariates. The current version contains a robust two-step estimator. For technical details, see Naghi, Varadi and Zhelonkin (2022), <doi:10.1016/j.ecosta.2022.05.001>.
Enables simulation of water piping networks using EPANET'. The package provides functions from the EPANET programmer's toolkit as R functions so that basic or customized simulations can be carried out from R. The package uses EPANET version 2.2 from Open Water Analytics <https://github.com/OpenWaterAnalytics/EPANET/releases/tag/v2.2>.
This package provides a goodness-of-fit test for elliptical distributions with diagnostic capabilities. Gilles R. Ducharme, Pierre Lafaye de Micheaux (2020) <doi:10.1016/j.jmva.2020.104602>.