Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Tracking accrual in clinical trials is important for trial success. If accrual is too slow, the trial will take too long and be too expensive. If accrual is much faster than expected, time sensitive tasks such as the writing of statistical analysis plans might need to be rushed. accrualPlot provides functions to aid the tracking of accrual and predict when a trial will reach it's intended sample size.
Semi-distributed Precipitation-Runoff Modeling based on airGR package models integrating human infrastructures and their managements.
This package provides a collection of Japanese text processing tools for filling Japanese iteration marks, Japanese character type conversions, segmentation by phrase, and text normalization which is based on rules for the Sudachi morphological analyzer and the NEologd (Neologism dictionary for MeCab'). These features are specific to Japanese and are not implemented in ICU (International Components for Unicode).
This package provides a spatiotemporal model that simulates the spread of Ascochyta blight in chickpea fields based on location-specific weather conditions. This model is adapted from a model developed by Diggle et al. (2002) <doi:10.1094/PHYTO.2002.92.10.1110> for simulating the spread of anthracnose in a lupin field.
Supports the analysis of oceanographic data recorded by Argo autonomous drifting profiling floats. Functions are provided to (a) download and cache data files, (b) subset data in various ways, (c) handle quality-control flags and (d) plot the results according to oceanographic conventions. A shiny app is provided for easy exploration of datasets. The package is designed to work well with the oce package, providing a wide range of processing capabilities that are particular to oceanographic analysis. See Kelley, Harbin, and Richards (2021) <doi:10.3389/fmars.2021.635922> for more on the scientific context and applications.
Evaluates acute lymphoblastic leukemia maintenance therapy practice at patient and cohort level.
This package provides functions for implementing the Analysis-of-marginal-Tail-Means (ATM) method, a robust optimization method for discrete black-box optimization. Technical details can be found in Mak and Wu (2018+) <arXiv:1712.03589>. This work was supported by USARO grant W911NF-17-1-0007.
Self-Attention algorithm helper functions and demonstration vignettes of increasing depth on how to construct the Self-Attention algorithm, this is based on Vaswani et al. (2017) <doi:10.48550/arXiv.1706.03762>, Dan Jurafsky and James H. Martin (2022, ISBN:978-0131873216) <https://web.stanford.edu/~jurafsky/slp3/> "Speech and Language Processing (3rd ed.)" and Alex Graves (2020) <https://www.youtube.com/watch?v=AIiwuClvH6k> "Attention and Memory in Deep Learning".
This package provides a framework for intuitive, multi-source gene and protein annotation, with a focus on integrating functional genomics with disease and drug data for translational insights. Methods used include g:Profiler (Raudvere et al. (2019) <doi:10.1093/nar/gkz369>), biomaRt (Durinck et al. (2009) <doi:10.1038/nprot.2009.97>), and the Open Targets Platform (Koscielny et al. (2017) <doi:10.1093/nar/gkw1055>).
One and two sample mean and variance tests (differences and ratios) are considered. The test statistics are all expressed in the same form as the Student t-test, which facilitates their presentation in the classroom. This contribution also fills the gap of a robust (to non-normality) alternative to the chi-square single variance test for large samples, since no such procedure is implemented in standard statistical software.
It computes two frequently applied actuarial measures, the expected shortfall and the value at risk. Seven well-known classical distributions in connection to the Bell generalized family are used as follows: Bell-exponential distribution, Bell-extended exponential distribution, Bell-Weibull distribution, Bell-extended Weibull distribution, Bell-Lomax distribution, Bell-Burr-12 distribution, and Bell-Burr-X distribution. Related works include: a) Fayomi, A., Tahir, M. H., Algarni, A., Imran, M., & Jamal, F. (2022). "A new useful exponential model with applications to quality control and actuarial data". Computational Intelligence and Neuroscience, 2022. <doi:10.1155/2022/2489998>. b) Alsadat, N., Imran, M., Tahir, M. H., Jamal, F., Ahmad, H., & Elgarhy, M. (2023). "Compounded Bell-G class of statistical models with applications to COVID-19 and actuarial data". Open Physics, 21(1), 20220242. <doi:10.1515/phys-2022-0242>.
Check if a given package name is available to use. It checks the name's validity. Checks if it is used on GitHub', CRAN and Bioconductor'. Checks for unintended meanings by querying Wiktionary and Wikipedia.
The empirical cumulative average deviation function introduced by the author is utilized to develop both Ad- and Ud-plots. The Ad-plot can identify symmetry, skewness, and outliers of the data distribution, including anomalies. The Ud-plot created by slightly modifying Ad-plot is exceptional in assessing normality, outperforming normal QQ-plot, normal PP-plot, and their derivations. The d-value that quantifies the degree of proximity between the Ud-plot and the graph of the estimated normal density function helps guide to make decisions on confirmation of normality. Full description of this methodology can be found in the article by Wijesuriya (2025) <doi:10.1080/03610926.2024.2440583>.
This package provides functions to accompany the book "Applied Statistical Modeling for Ecologists" by Marc Kéry and Kenneth F. Kellner (2024, ISBN: 9780443137150). Included are functions for simulating and customizing the datasets used for the example models in each chapter, summarizing output from model fitting engines, and running custom Markov Chain Monte Carlo.
This package implements anomaly detection as binary classification for cross-sectional data. Uses maximum likelihood estimates and normal probability functions to classify observations as anomalous. The method is presented in the following lecture from the Machine Learning course by Andrew Ng: <https://www.coursera.org/learn/machine-learning/lecture/C8IJp/algorithm/>, and is also described in: Aleksandar Lazarevic, Levent Ertoz, Vipin Kumar, Aysel Ozgur, Jaideep Srivastava (2003) <doi:10.1137/1.9781611972733.3>.
This package provides a comprehensive set of tools for descriptive statistics, graphical data exploration, outlier detection, homoscedasticity testing, and multiple comparison procedures. Includes manual implementations of Levene's test, Bartlett's test, and the Fligner-Killeen test, as well as post hoc comparison methods such as Tukey, Scheffé, Games-Howell, Brunner-Munzel, and others. This version introduces two new procedures: the Jonckheere-Terpstra trend test and the Jarque-Bera test with Glinskiy's (2024) correction. Designed for use in teaching, applied statistical analysis, and reproducible research. Additionally you can find a post hoc Test Planner, which helps you to make a decision on which procedure is most suitable.
An interface for performing all stages of ADMIXTOOLS analyses (<https://github.com/dreichlab/admixtools>) entirely from R. Wrapper functions (D, f4, f3, etc.) completely automate the generation of intermediate configuration files, run ADMIXTOOLS programs on the command-line, and parse output files to extract values of interest. This allows users to focus on the analysis itself instead of worrying about low-level technical details. A set of complementary functions for processing and filtering of data in the EIGENSTRAT format is also provided.
Construct language-aware lists. Make "and"-separated and "or"-separated lists that automatically conform to the user's language settings.
Analysis of data from unreplicated orthogonal experiments such as 2-level factorial and fractional factorial designs and Plackett-Burman designs using the all possible comparisons (APC) methodology developed by Miller (2005) <doi:10.1198/004017004000000608>.
This package implements the adaptive smoothing spline estimator for the function-on-function linear regression model described in Centofanti et al. (2023) <doi:10.1007/s00180-022-01223-6>.
Using of the accelerated line search algorithm for simultaneously diagonalize a set of symmetric positive definite matrices.
It performs Canonical Correlation Analysis and provides inferential guaranties on the correlation components. The p-values are computed following the resampling method developed in Winkler, A. M., Renaud, O., Smith, S. M., & Nichols, T. E. (2020). Permutation inference for canonical correlation analysis. NeuroImage, <doi:10.1016/j.neuroimage.2020.117065>. Furthermore, it provides plotting tools to visualize the results.
The Langmuir and Freundlich adsorption isotherms are pivotal in characterizing adsorption processes, essential across various scientific disciplines. Proper interpretation of adsorption isotherms involves robust fitting of data to the models, accurate estimation of parameters, and efficiency evaluation of the models, both in linear and non-linear forms. For researchers and practitioners in the fields of chemistry, environmental science, soil science, and engineering, a comprehensive package that satisfies all these requirements would be ideal for accurate and efficient analysis of adsorption data, precise model selection and validation for rigorous scientific inquiry and real-world applications. Details can be found in Langmuir (1918) <doi:10.1021/ja02242a004> and Giles (1973) <doi:10.1111/j.1478-4408.1973.tb03158.x>.
Retrieves open source airport data and provides tools to look up information, translate names into codes and vice-verse, as well as some basic calculation functions for measuring distances. Data is licensed under the Open Database License.