Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Helper functions for working with Regional Ocean Modeling System ROMS output. See <https://www.myroms.org/> for more information about ROMS'.
Model adsorption behavior using classical isotherms, including Langmuir, Freundlich, Brunauerâ Emmettâ Teller (BET), and Temkin models. The package supports parameter estimation through both linearized and non-linear fitting techniques and generates high-quality plots for model diagnostics. It is intended for environmental scientists, chemists, and researchers working on adsorption phenomena in soils, water treatment, and material sciences. Functions are compatible with base R and ggplot2 for visualization.
This package provides a chat package connecting to API endpoints by OpenAI (<https://platform.openai.com/>) to answer questions (about R).
This package implements a multiple testing approach to the choice of a threshold gamma on the p-values using the Average Power Function (APF) and Bayes False Discovery Rate (FDR) robust estimation. Function apf_fdr() estimates both quantities from either raw data or p-values. Function apf_plot() produces smooth graphs and tables of the relevant results. Details of the methods can be found in Quatto P, Margaritella N, et al. (2019) <doi:10.1177/0962280219844288>.
This package provides a tool to analyse ActiGraph accelerometer data and to implement the use of the PROactive Physical Activity in COPD (chronic obstructive pulmonary disease) instruments. Once analysis is completed, the app allows to export results to .csv files and to generate a report of the measurement. All the configured inputs relevant for interpreting the results are recorded in the report. In addition to the existing R packages that are fully integrated with the app, the app uses some functions from the actigraph.sleepr package developed by Petkova (2021) <https://github.com/dipetkov/actigraph.sleepr/>.
This package implements techniques to estimate the unknown quantities related to two-component admixture models, where the two components can belong to any distribution (note that in the case of multinomial mixtures, the two components must belong to the same family). Estimation methods depend on the assumptions made on the unknown component density; see Bordes and Vandekerkhove (2010) <doi:10.3103/S1066530710010023>, Patra and Sen (2016) <doi:10.1111/rssb.12148>, and Milhaud, Pommeret, Salhi, Vandekerkhove (2024) <doi:10.3150/23-BEJ1593>. In practice, one can estimate both the mixture weight and the unknown component density in a wide variety of frameworks. On top of that, hypothesis tests can be performed in one and two-sample contexts to test the unknown component density (see Milhaud, Pommeret, Salhi and Vandekerkhove (2022) <doi:10.1016/j.jspi.2021.05.010>, and Milhaud, Pommeret, Salhi, Vandekerkhove (2024) <doi:10.3150/23-BEJ1593>). Finally, clustering of unknown mixture components is also feasible in a K-sample setting (see Milhaud, Pommeret, Salhi, Vandekerkhove (2024) <https://jmlr.org/papers/v25/23-0914.html>).
Exploration of Weather Research & Forecasting ('WRF') Model data of Servicio Meteorologico Nacional (SMN) from Amazon Web Services (<https://registry.opendata.aws/smn-ar-wrf-dataset/>) cloud. The package provides the possibility of data downloading, processing and correction methods. It also has map management and series exploration of available meteorological variables of WRF forecast.
This package provides statistical tools to analyze heterogeneous effects of rare variants within genes that are associated with multiple traits. The package implements methods for assessing pleiotropic effects and identifying allelic heterogeneity, which can be useful in large-scale genetic studies. Methods include likelihood-based statistical tests to assess these effects. For more details, see Lu et al. (2024) <doi:10.1101/2024.10.01.614806>.
This package provides a recent method proposed by Yi and Chen (2023) <doi:10.1177/09622802221146308> is used to estimate the average treatment effects using noisy data containing both measurement error and spurious variables. The package AteMeVs contains a set of functions that provide a step-by-step estimation procedure, including the correction of the measurement error effects, variable selection for building the model used to estimate the propensity scores, and estimation of the average treatment effects. The functions contain multiple options for users to implement, including different ways to correct for the measurement error effects, distinct choices of penalty functions to do variable selection, and various regression models to characterize propensity scores.
An evaluation framework for algorithm portfolios using Item Response Theory (IRT). We use continuous and polytomous IRT models to evaluate algorithms and introduce algorithm characteristics such as stability, effectiveness and anomalousness (Kandanaarachchi, Smith-Miles 2020) <doi:10.13140/RG.2.2.11363.09760>.
Raw and processed versions of the data from De Cock (2011) <http://ww2.amstat.org/publications/jse> are included in the package.
An application for analysis of Adverse Events, as described in Chen, et al., (2023) <doi:10.3390/cancers15092521>. The required data for the application includes demographics, follow up, adverse event, drug administration and optional tumor measurement data. The app can produce swimmers plots of adverse events, Kaplan-Meier plots and Cox Proportional Hazards model results for the association of adverse event biomarkers and overall survival and progression free survival. The adverse event biomarkers include occurrence of grade 3, low grade (1-2), and treatment related adverse events. Plots and tables of results are downloadable.
An efficient Rcpp implementation of the Adaptive Rejection Metropolis Sampling (ARMS) algorithm proposed by Gilks, W. R., Best, N. G. and Tan, K. K. C. (1995) <doi:10.2307/2986138>. This allows for sampling from a univariate target probability distribution specified by its (potentially unnormalised) log density.
Edit an Antares simulation before running it : create new areas, links, thermal clusters or binding constraints or edit existing ones. Update Antares general & optimization settings. Antares is an open source power system generator, more information available here : <https://antares-simulator.org/>.
Epidemiological population dynamics models traditionally define a pathogen's virulence as the increase in the per capita rate of mortality of infected hosts due to infection. This package provides functions allowing virulence to be estimated by maximum likelihood techniques. The approach is based on the analysis of relative survival comparing survival in matching cohorts of infected vs. uninfected hosts (Agnew 2019) <doi:10.1101/530709>.
Power and associated functions useful in prospective planning and monitoring of a clinical trial when a recurrent event endpoint is to be assessed by the robust Andersen-Gill model, see Lin, Wei, Yang, and Ying (2010) <doi:10.1111/1467-9868.00259>. The equations developed in Ingel and Jahn-Eimermacher (2014) <doi:10.1002/bimj.201300090> and their consequences are employed.
This package provides a wrapper for the Microsoft Azure Maps REST APIs <https://learn.microsoft.com/en-us/rest/api/maps/route?view=rest-maps-2025-01-01>, enabling users to access mapping and geospatial services directly from R. This package simplifies authenticating, building, and sending requests for services like route directions. It handles conversions between R objects (such as sf objects) and the GeoJSON+JSON format required by the API, making it easier to integrate Azure Maps into R-based data analysis workflows.
Construct language-aware lists. Make "and"-separated and "or"-separated lists that automatically conform to the user's language settings.
This package implements a credential chain for Azure OAuth 2.0 authentication based on the package httr2''s OAuth framework. Sequentially attempts authentication methods until one succeeds. During development allows interactive browser-based flows ('Device Code and Auth Code flows) and non-interactive flow ('Client Secret') in batch mode.
Perform one-dimensional spline regression with automatic knot selection. This package uses a penalized approach to select the most relevant knots. B-splines of any degree can be fitted. More details in Goepp et al. (2018)', "Spline Regression with Automatic Knot Selection", <arXiv:1808.01770>.
Read, manipulate and write voxel spaces. Voxel spaces are read from text-based output files of the AMAPVox software. AMAPVox is a LiDAR point cloud voxelisation software that aims at estimating leaf area through several theoretical/numerical approaches. See more in the article Vincent et al. (2017) <doi:10.23708/1AJNMP> and the technical note Vincent et al. (2021) <doi:10.23708/1AJNMP>.
This package provides a client for AWS Translate <https://aws.amazon.com/documentation/translate>, a machine translation service that will convert a text input in one language into a text output in another language.
R interface for Apache Sedona based on sparklyr (<https://sedona.apache.org>).
Offers a set of functions to easily make predictions for univariate time series. autoTS is a wrapper of existing functions of the forecast and prophet packages, harmonising their outputs in tidy dataframes and using default values for each. The core function getBestModel() allows the user to effortlessly benchmark seven algorithms along with a bagged estimator to identify which one performs the best for a given time series.