Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
The production of certified reference materials (CRMs) requires various statistical tests depending on the task and recorded data to ensure that reported values of CRMs are appropriate. Often these tests are performed according to the procedures described in ISO GUIDE 35:2017'. The eCerto package contains a Shiny app which provides functionality to load, process, report and backup data recorded during CRM production and facilitates following the recommended procedures. It is described in Lisec et al (2023) <doi:10.1007/s00216-023-05099-3> and can also be accessed online <https://apps.bam.de/shn00/eCerto/> without package installation.
This package provides step-by-step automation for integrating biodiversity data from multiple online aggregators, merging and cleaning datasets while addressing challenges such as taxonomic inconsistencies, georeferencing issues, and spatial or environmental outliers. Includes functions to extract environmental data and to define the biogeographic ranges in which species are most likely to occur.
Estimates linear panel event study models. Plots coefficients following the recommendations in Freyaldenhoven et al. (2021) <doi:10.3386/w29170>. Includes sup-t bands, testing for key hypotheses, least wiggly path through the Wald region. Allows instrumental variables estimation following Freyaldenhoven et al. (2019) <doi:10.1257/aer.20180609>.
This package implements several algorithms for bundling edges in networks and flow and metro map layouts. This includes force directed edge bundling <doi:10.1111/j.1467-8659.2009.01450.x>, a flow algorithm based on Steiner trees<doi:10.1080/15230406.2018.1437359> and a multicriteria optimization method for metro map layouts <doi:10.1109/TVCG.2010.24>.
Estimation of epidemiological parameters with Laplacian-P-splines following the methodology of Gressani et al. (2022) <doi:10.1371/journal.pcbi.1010618>.
Test hypotheses and construct confidence intervals for AUC (area under Receiver Operating Characteristic curve) and pAUC (partial area under ROC curve), from the given two samples of test data with disease/healthy subjects. The method used is based on TWO SAMPLE empirical likelihood and PROFILE empirical likelihood, as described in <https://www.ms.uky.edu/~mai/research/eAUC1.pdf>.
The EXPOS model uses a digital elevation model (DEM) to estimate exposed and protected areas for a given hurricane wind direction and inflection angle. The resulting topographic exposure maps can be combined with output from the HURRECON model to estimate hurricane wind damage across a region. For details on the original version of the EXPOS model written in Borland Pascal', see: Boose, Foster, and Fluet (1994) <doi:10.2307/2937142>, Boose, Chamberlin, and Foster (2001) <doi:10.1890/0012-9615(2001)071[0027:LARIOH]2.0.CO;2>, and Boose, Serrano, and Foster (2004) <doi:10.1890/02-4057>.
Empirical Bayes thresholding using the methods developed by I. M. Johnstone and B. W. Silverman. The basic problem is to estimate a mean vector given a vector of observations of the mean vector plus white noise, taking advantage of possible sparsity in the mean vector. Within a Bayesian formulation, the elements of the mean vector are modelled as having, independently, a distribution that is a mixture of an atom of probability at zero and a suitable heavy-tailed distribution. The mixing parameter can be estimated by a marginal maximum likelihood approach. This leads to an adaptive thresholding approach on the original data. Extensions of the basic method, in particular to wavelet thresholding, are also implemented within the package.
Implementation of the Centre of Gravity method and the Extrapolated Centre of Gravity method. It supports replicated observations. Cameron, D.G., et al (1982) <doi:10.1366/0003702824638610> JCGM (2008) <doi:10.59161/JCGM100-2008E>.
This SVG elements generator can easily generate SVG elements such as rect, line, circle, ellipse, polygon, polyline, text and group. Also, it can combine and output SVG elements into a SVG file.
Collection of functions related to benchmark with prediction models for data analysis and editing of clinical and epidemiological data.
Allows for forward-in-time simulation of epistatic networks with associated phenotypic output.
This package provides environment hooks that obtain errors and warnings which occur during the execution of code to automatically search for solutions.
Null models to analyse ecological networks (e.g. food webs, flower-visitation networks, seed-dispersal networks) and detect resource preferences or non-random interactions among network nodes. Tools are provided to run null models, test for and plot preferences, plot and analyse bipartite networks, and export null model results in a form compatible with other network analysis packages. The underlying null model was developed by Agusti et al. (2003) Molecular Ecology <doi:10.1046/j.1365-294X.2003.02014.x> and the full application to ecological networks by Vaughan et al. (2018) econullnetr: an R package using null models to analyse the structure of ecological networks and identify resource selection. Methods in Ecology & Evolution, <doi:10.1111/2041-210X.12907>.
Fits a state-space mass-balance model for marine ecosystems, which implements dynamics derived from Ecopath with Ecosim ('EwE') <https://ecopath.org/> while fitting to time-series of fishery catch, biomass indices, age-composition samples, and weight-at-age data. Ecostate fits biological parameters (e.g., equilibrium mass) and measurement parameters (e.g., catchability coefficients) jointly with residual variation in process errors, and can include Bayesian priors for parameters.
Replication methods to compute some basic statistic operations (means, standard deviations, frequency tables, percentiles, mean comparisons using weighted effect coding, generalized linear models, and linear multilevel models) in complex survey designs comprising multiple imputed or nested imputed variables and/or a clustered sampling structure which both deserve special procedures at least in estimating standard errors. See the package documentation for a more detailed description along with references.
Predicts enrollment and events at the design or analysis stage using specified enrollment and time-to-event models through simulations.
Perform a Bayesian estimation of the exploratory reduced reparameterized unified model (ErRUM) described by Culpepper and Chen (2018) <doi:10.3102/1076998618791306>.
This package provides a number of utility function for exploratory factor analysis are included in this package. In particular, it computes standard errors for parameter estimates and factor correlations under a variety of conditions.
Analysing data from evaluations of educational interventions using a randomised controlled trial design. Various analytical tools to perform sensitivity analysis using different methods are supported (e.g. frequentist models with bootstrapping and permutations options, Bayesian models). The included commands can be used for simple randomised trials, cluster randomised trials and multisite trials. The methods can also be used more widely beyond education trials. This package can be used to evaluate other intervention designs using Frequentist and Bayesian multilevel models.
This package provides functions for the echelon analysis proposed by Myers et al. (1997) <doi:10.1023/A:1018518327329>, and the detection of spatial clusters using echelon scan method proposed by Kurihara (2003) <doi:10.20551/jscswabun.15.2_171>.
EM algorithms and several efficient initialization methods for model-based clustering of finite mixture Gaussian distribution with unstructured dispersion in both of unsupervised and semi-supervised learning.
Production efficiency and economic efficiency are crucial concepts in agriculture/horticulture for sustainable and profitable practices. It helps to determine the optimal use of resources to maximize outputs and profitability. Production efficiency focuses on the optimal use of resources to produce goods, while economic efficiency ensures these goods are produced and allocated in a way that maximizes economic welfare. Production efficiency and economic efficiency are calculated with the help of the formula given by (Kumar et al., 2017) <doi:10.21921/jas.v4i04.10202>.
Notice: The package EffectStars2 provides a more up-to-date implementation of effect stars! EffectStars provides functions to visualize regression models with categorical response as proposed by Tutz and Schauberger (2013) <doi:10.1080/10618600.2012.701379>. The effects of the variables are plotted with star plots in order to allow for an optical impression of the fitted model.