Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides functions of five estimation method for ED50 (50 percent effective dose) are provided, and they are respectively Dixon-Mood method (1948) <doi:10.2307/2280071>, Choi's original turning point method (1990) <doi:10.2307/2531453> and it's modified version given by us, as well as logistic regression and isotonic regression. Besides, the package also supports comparison between two estimation results.
This package provides the analysis of variance table including the expected mean squares (EMS) for various types of experimental design. When some variables are random effects or we use special experimental design such as nested design, repeated-measures design, or split-plot design, it is not easy to find the appropriate test, especially denominator for F-statistic which depends on EMS.
Structure mining from XGBoost and LightGBM models. Key functionalities of this package cover: visualisation of tree-based ensembles models, identification of interactions, measuring of variable importance, measuring of interaction importance, explanation of single prediction with break down plots (based on xgboostExplainer and iBreakDown packages). To download the LightGBM use the following link: <https://github.com/Microsoft/LightGBM>. EIX is a part of the DrWhy.AI universe.
Package EDISON (Estimation of Directed Interactions from Sequences Of Non-homogeneous gene expression) runs an MCMC simulation to reconstruct networks from time series data, using a non-homogeneous, time-varying dynamic Bayesian network. Networks segments and changepoints are inferred concurrently, and information sharing priors provide a reduction of the inference uncertainty.
Data sets for the chapter "Ensemble Postprocessing with R" of the book Stephane Vannitsem, Daniel S. Wilks, and Jakob W. Messner (2018) "Statistical Postprocessing of Ensemble Forecasts", Elsevier, 362pp. These data sets contain temperature and precipitation ensemble weather forecasts and corresponding observations at Innsbruck/Austria. Additionally, a demo with the full code of the book chapter is provided.
This package provides functions for computing test reliability and conditional standard error of measurement (CSEM) based on the methods described in the Reliability in Educational Measurement chapter of the 5th edition of "Educational Measurement" by Lee and Harris (2025, ISBN:9780197654965).
Implementations of the expected shortfall backtests of Bayer and Dimitriadis (2020) <doi:10.1093/jjfinec/nbaa013> as well as other well known backtests from the literature. Can be used to assess the correctness of forecasts of the expected shortfall risk measure which is e.g. used in the banking and finance industry for quantifying the market risk of investments. A special feature of the backtests of Bayer and Dimitriadis (2020) <doi:10.1093/jjfinec/nbaa013> is that they only require forecasts of the expected shortfall, which is in striking contrast to all other existing backtests, making them particularly attractive for practitioners.
Estimation of the parameters in a model for symmetric relational data (e.g., the above-diagonal part of a square matrix), using a model-based eigenvalue decomposition and regression. Missing data is accommodated, and a posterior mean for missing data is calculated under the assumption that the data are missing at random. The marginal distribution of the relational data can be arbitrary, and is fit with an ordered probit specification. See Hoff (2007) <doi:10.48550/arXiv.0711.1146>. for details on the model.
Read raw EEM data and prepares them for further analysis.
This package provides functions for the Bayesian analysis of extreme value models, using Markov chain Monte Carlo methods. Allows the construction of both uninformative and informed prior distributions for common statistical models applied to extreme event data, including the generalized extreme value distribution.
Extension of testthat package to make unit tests on empirical distributions of estimators and functions for diagnostics of their finite-sample performance.
This package provides a number of utility function for exploratory factor analysis are included in this package. In particular, it computes standard errors for parameter estimates and factor correlations under a variety of conditions.
This package provides a collection of functions developed to support the tutorial on using Exploratory Structural Equiation Modeling (ESEM) (Asparouhov & Muthén, 2009) <https://www.statmodel.com/download/EFACFA810.pdf>) with Longitudinal Study of Australian Children (LSAC) dataset (Mohal et al., 2023) <doi:10.26193/QR4L6Q>. The package uses tidyverse','psych', lavaan','semPlot and provides additional functions to conduct ESEM. The package provides general functions to complete ESEM, including esem_c(), creation of target matrix (if it is used) make_target(), generation of the Confirmatory Factor Analysis (CFA) model syntax esem_cfa_syntax(). A sample data is provided - the package includes a sample data of the Strengths and Difficulties Questionnaire of the Longitudinal Study of Australian Children (SDQ LSAC) in sdq_lsac(). ESEM package vignette presents the tutorial demonstrating the use of ESEM on SDQ LSAC data.
If one treated group is matched to one control reservoir in two different ways to produce two sets of treated-control matched pairs, then the two control groups may be entwined, in the sense that some control individuals are in both control groups. The exterior match is used to compare the two control groups.
This package provides functions to compute state-specific and marginal life expectancies. The computation is based on a fitted continuous-time multi-state model that includes an absorbing death state; see Van den Hout (2017, ISBN:9781466568402). The fitted multi-state model model should be estimated using the msm package using age as the time-scale.
This package provides a built-in Nemaplex database for nematodes, which can be used to search for various nematodes. Also supports various nematode community and functional analyses such as nematode diversity, maturity index, metabolic footprint, and functional guild. The methods are based on <https://shiny.wur.nl/ninja/>, Bongers, T. (1990) <doi:10.1007/BF00324627>, Ferris, H. (2010) <doi:10.1016/j.ejsobi.2010.01.003>, Wan, B. et al. (2022) <doi:10.1016/j.soilbio.2022.108695>, and Van Den Hoogen, J. et al. (2019) <doi:10.1038/s41586-019-1418-6>.
Fixation and saccade detection in eye movement recordings. This package implements a dispersion-based algorithm (I-DT) proposed by Salvucci & Goldberg (2000) which detects fixation duration and position.
This package contains data about emojis with relevant metadata, and functions to work with emojis when they are in strings.
This is a port of Fortran ETERNA 3.4 <http://igets.u-strasbg.fr/soft_and_tool.php> by H.G. Wenzel for calculating synthetic Earth tides using the Hartmann and Wenzel (1994) <doi:10.1029/95GL03324> or Kudryavtsev (2004) <doi:10.1007/s00190-003-0361-2> tidal catalogs.
This package provides a flexible framework for calculating Elo ratings and resulting rankings of any two-team-per-matchup system (chess, sports leagues, Go', etc.). This implementation is capable of evaluating a variety of matchups, Elo rating updates, and win probabilities, all based on the basic Elo rating system. It also includes methods to benchmark performance, including logistic regression and Markov chain models.
Estimates RxC (R by C) vote transfer matrices (ecological contingency tables) from aggregate data using the model described in Forcina et al. (2012), as extension of the model proposed in Brown and Payne (1986). Allows incorporation of covariates. References: Brown, P. and Payne, C. (1986). Aggregate data, ecological regression and voting transitions''. Journal of the American Statistical Association, 81, 453â 460. <DOI:10.1080/01621459.1986.10478290>. Forcina, A., Gnaldi, M. and Bracalente, B. (2012). A revised Brown and Payne model of voting behaviour applied to the 2009 elections in Italy''. Statistical Methods & Applications, 21, 109â 119. <DOI:10.1007/s10260-011-0184-x>.
Package implements the EDNE-test for equivalence according to Hoffelder et al. (2015) <DOI:10.1080/10543406.2014.920344>. "EDNE" abbreviates "Euclidean Distance between the Non-standardized Expected values". The EDNE-test for equivalence is a multivariate two-sample equivalence test. Distance measure of the test is the Euclidean distance. The test is an asymptotically valid test for the family of distributions fulfilling the assumptions of the multivariate central limit theorem (see Hoffelder et al.,2015). The function EDNE.EQ() implements the EDNE-test for equivalence according to Hoffelder et al. (2015). The function EDNE.EQ.dissolution.profiles() implements a variant of the EDNE-test for equivalence analyses of dissolution profiles (see Suarez-Sharp et al.,2020 <DOI:10.1208/s12248-020-00458-9>). EDNE.EQ.dissolution.profiles() checks whether the quadratic mean of the differences of the expected values of both dissolution profile populations is statistically significantly smaller than 10 [\% of label claim]. The current regulatory standard approach for equivalence analyses of dissolution profiles is the similarity factor f2. The statistical hypotheses underlying EDNE.EQ.dissolution.profiles() coincide with the hypotheses for f2 (see Hoffelder et al.,2015, Suarez-Sharp et al., 2020).
Because fungicide resistance is an important phenotypic trait for fungi and oomycetes, it is necessary to have a standardized method of statistically analyzing the Effective Concentration (EC) values. This package is designed for those who are not terribly familiar with R to be able to analyze and plot an entire set of isolates using the drc package.
This package provides functions to facilitate the use of the ff package in interaction with big data in SQL databases (e.g. in Oracle', MySQL', PostgreSQL', Hive') by allowing easy importing directly into ffdf objects using DBI', RODBC and RJDBC'. Also contains some basic utility functions to do fast left outer join merging based on match', factorisation of data and a basic function for re-coding vectors.