Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides a Shiny web application for energy industry analytics. Take an overview of the industry, measure Key Performance Indicators, identify changes in the industry over time, and discover new relationships in the data.
This package provides tools for simulating draws from continuous time processes with well-defined exponential family random graph (ERGM) equilibria, i.e. ERGM generating processes (EGPs). A number of EGPs are supported, including the families identified in Butts (2023) <doi:10.1080/0022250X.2023.2180001>, as are functions for hazard calculation and timing calibration.
The main functions are emmreml', and emmremlMultiKernel'. emmreml solves a mixed model with known covariance structure using the EMMA algorithm. emmremlMultiKernel is a wrapper for emmreml to handle multiple random components with known covariance structures. The function emmremlMultivariate solves a multivariate gaussian mixed model with known covariance structure using the ECM algorithm.
The EconDataverse is a universe of open-source packages to work seamlessly with economic data. This package is designed to make it easy to install and load multiple EconDataverse packages in a single step. Learn more about the EconDataverse at <https://www.econdataverse.org>.
Equating of multiple forms using Item Response Theory (IRT) methods (Battauz M. (2017) <doi:10.1007/s11336-016-9517-x>, Battauz and Leoncio (2023) <doi:10.1177/01466216231151702>, Haberman S. J. (2009) <doi:10.1002/j.2333-8504.2009.tb02197.x>).
Simulates the soil water balance (soil moisture, evapotranspiration, leakage and runoff), rainfall series by using the marked Poisson process and the vegetation growth through the normalized difference vegetation index (NDVI). Please see Souza et al. (2016) <doi:10.1002/hyp.10953>.
Total Time on Test plot and routines for parameter estimation of any lifetime distribution implemented in R via maximum likelihood (ML) given a data set. It is implemented thinking on parametric survival analysis, but it feasible to use in parameter estimation of probability density or mass functions in any field. The main routines maxlogL and maxlogLreg are wrapper functions specifically developed for ML estimation. There are included optimization procedures such as nlminb and optim from base package, and DEoptim Mullen (2011) <doi:10.18637/jss.v040.i06>. Standard errors are estimated with numDeriv Gilbert (2011) <https://CRAN.R-project.org/package=numDeriv> or the option Hessian = TRUE of optim function.
The EpiSimR package provides an interactive shiny app based on deterministic compartmental mathematical modeling for simulating and visualizing the dynamics of epidemic and endemic disease spread. It allows users to explore various intervention strategies, including vaccination and isolation, by adjusting key epidemiological parameters. The methodology follows the approach described by Brauer (2008) <doi:10.1007/978-3-540-78911-6_2>. Thanks to shiny package.
Three semi-parametric methods for detection of outliers in environmental data based on kernel regression and subsequent analysis of smoothing residuals. The first method (Campulova, Michalek, Mikuska and Bokal (2018) <DOI: 10.1002/cem.2997>) analyzes the residuals using changepoint analysis, the second method is based on control charts (Campulova, Veselik and Michalek (2017) <DOI: 10.1016/j.apr.2017.01.004>) and the third method (Holesovsky, Campulova and Michalek (2018) <DOI: 10.1016/j.apr.2017.06.005>) analyzes the residuals using extreme value theory (Holesovsky, Campulova and Michalek (2018) <DOI: 10.1016/j.apr.2017.06.005>).
This package implements comprehensive test data engineering methods as described in Shojima (2022, ISBN:978-9811699856). Provides statistical techniques for engineering and processing test data: Classical Test Theory (CTT) with reliability coefficients for continuous ability assessment; Item Response Theory (IRT) including Rasch, 2PL, and 3PL models with item/test information functions; Latent Class Analysis (LCA) for nominal clustering; Latent Rank Analysis (LRA) for ordinal clustering with automatic determination of cluster numbers; Biclustering methods including infinite relational models for simultaneous clustering of examinees and items without predefined cluster numbers; and Bayesian Network Models (BNM) for visualizing inter-item dependencies. Features local dependence analysis through LRA and biclustering, parameter estimation, dimensionality assessment, and network structure visualization for educational, psychological, and social science research.
This package provides environment hooks that obtain errors and warnings which occur during the execution of code to automatically search for solutions.
Ever read or wrote source files containing sectioning comments? If these comments are markdown style section comments, you can excerpt them and set a table of contents using the python package excerpts (<https://pypi.org/project/excerpts/>).
An intuitive and user-friendly package designed to aid undergraduate students in understanding and applying econometric methods in their studies, Tailored specifically for Econometrics and Regression Modeling courses, it provides a practical toolkit for modeling and analyzing econometric data with detailed inference capabilities.
Several web services are available that provide access to elevation data. This package provides access to many of those services and returns elevation data either as an sf simple features object from point elevation services or as a raster object from raster elevation services. In future versions, elevatr will drop support for raster and will instead return terra objects. Currently, the package supports access to the Amazon Web Services Terrain Tiles <https://registry.opendata.aws/terrain-tiles/>, the Open Topography Global Datasets API <https://opentopography.org/developers/>, and the USGS Elevation Point Query Service <https://apps.nationalmap.gov/epqs/>.
Using variational techniques we address some epidemiological problems as the incidence curve decomposition by inverting the renewal equation as described in Alvarez et al. (2021) <doi:10.1073/pnas.2105112118> and Alvarez et al. (2022) <doi:10.3390/biology11040540> or the estimation of the functional relationship between epidemiological indicators. We also propose a learning method for the short time forecast of the trend incidence curve as described in Morel et al. (2022) <doi:10.1101/2022.11.05.22281904>.
"Evolutionary Virtual Education" - evolved - provides multiple tools to help educators (especially at the graduate level or in advanced undergraduate level courses) apply inquiry-based learning in general evolution classes. In particular, the tools provided include functions that simulate evolutionary processes (e.g., genetic drift, natural selection within a single locus) or concepts (e.g. Hardy-Weinberg equilibrium, phylogenetic distribution of traits). More than only simulating, the package also provides tools for students to analyze (e.g., measuring, testing, visualizing) datasets with characteristics that are common to many fields related to evolutionary biology. Importantly, the package is heavily oriented towards providing tools for inquiry-based learning - where students follow scientific practices to actively construct knowledge. For additional details, see package's vignettes.
This package provides tools for general properties including price, quantity, elasticity, convexity, marginal revenue and manifold of various economics demand systems including Linear, Translog, CES, LES and CREMR.
Biotracers and stomach content analyses are combined in a Bayesian hierarchical model to estimate a probabilistic topology matrix (all trophic link probabilities) and a diet matrix (all diet proportions). The package relies on the JAGS software and the jagsUI package to run a Markov chain Monte Carlo approximation of the different variables.
This package implements stochastic simulations of community assembly (ecological diversification) using customizable ecospace frameworks (functional trait spaces). Provides a wrapper to calculate common ecological disparity and functional ecology statistical dynamics as a function of species richness. Functions are written so they will work in a parallel-computing environment.
Comprehensive toolkit for addressing selection bias in binary disease models across diverse non-probability samples, each with unique selection mechanisms. It utilizes Inverse Probability Weighting (IPW) and Augmented Inverse Probability Weighting (AIPW) methods to reduce selection bias effectively in multiple non-probability cohorts by integrating data from either individual-level or summary-level external sources. The package also provides a variety of variance estimation techniques. Please refer to Kundu et al. <doi:10.48550/arXiv.2412.00228>.
This package creates simple or stacked epidemic curves for hourly, daily, weekly or monthly outcome data.
Conduct numerous exploratory analyses in an instant with a point-and-click interface. With one simple command, this tool launches a Shiny App on the local machine. Drag and drop variables in a data set to categorize them as possible independent, dependent, moderating, or mediating variables. Then run dozens (or hundreds) of analyses instantly to uncover any statistically significant relationships among variables. Any relationship thus uncovered should be tested in follow-up studies. This tool is designed only to facilitate exploratory analyses and should NEVER be used for p-hacking. Many of the functions used in this package are previous versions of functions in the R Packages kim and ezr'. Selected References: Chang et al. (2021) <https://CRAN.R-project.org/package=shiny>. Dowle et al. (2021) <https://CRAN.R-project.org/package=data.table>. Kim (2023) <https://jinkim.science/docs/kim.pdf>. Kim (2021) <doi:10.5281/zenodo.4619237>. Kim (2020) <https://CRAN.R-project.org/package=ezr>. Simmons et al. (2011) <doi:10.1177/0956797611417632> Tingley et al. (2019) <https://CRAN.R-project.org/package=mediation>. Wickham et al. (2020) <https://CRAN.R-project.org/package=ggplot2>.
An implementation of extended state-space SIR models developed by Song Lab at UM school of Public Health. There are several functions available by 1) including a time-varying transmission modifier, 2) adding a time-dependent quarantine compartment, 3) adding a time-dependent antibody-immunization compartment. Wang L. (2020) <doi:10.6339/JDS.202007_18(3).0003>.
Density, distribution function, quantile function and random generation for the Kumaraswamy Complementary Weibull Geometric (Kw-CWG) lifetime probability distribution proposed in Afify, A.Z. et al (2017) <doi:10.1214/16-BJPS322>.