Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Three semi-parametric methods for detection of outliers in environmental data based on kernel regression and subsequent analysis of smoothing residuals. The first method (Campulova, Michalek, Mikuska and Bokal (2018) <DOI: 10.1002/cem.2997>) analyzes the residuals using changepoint analysis, the second method is based on control charts (Campulova, Veselik and Michalek (2017) <DOI: 10.1016/j.apr.2017.01.004>) and the third method (Holesovsky, Campulova and Michalek (2018) <DOI: 10.1016/j.apr.2017.06.005>) analyzes the residuals using extreme value theory (Holesovsky, Campulova and Michalek (2018) <DOI: 10.1016/j.apr.2017.06.005>).
This package provides tools for the analysis of epidemiological and surveillance data. Contains functions for directly and indirectly adjusting measures of disease frequency, quantifying measures of association on the basis of single or multiple strata of count data presented in a contingency table, computation of confidence intervals around incidence risk and incidence rate estimates and sample size calculations for cross-sectional, case-control and cohort studies. Surveillance tools include functions to calculate an appropriate sample size for 1- and 2-stage representative freedom surveys, functions to estimate surveillance system sensitivity and functions to support scenario tree modelling analyses.
An integrated set of tools to analyze and simulate networks based on exponential-family random graph models (ERGMs). ergm is a part of the Statnet suite of packages for network analysis. See Hunter, Handcock, Butts, Goodreau, and Morris (2008) <doi:10.18637/jss.v024.i03> and Krivitsky, Hunter, Morris, and Klumb (2023) <doi:10.18637/jss.v105.i06>.
Dynamic and Interactive Maps with R, powered by leaflet <https://leafletjs.com>. evolMap generates a web page with interactive and dynamic maps to which you can add geometric entities (points, lines or colored geographic areas), and/or markers with optional links between them. The dynamic ability of these maps allows their components to evolve over a continuous period of time or by periods.
This package provides a graphical user interface for open source event detection.
Expert Algorithm Verbal Autopsy assigns causes of death to 2016 WHO Verbal Autopsy Questionnaire data. odk2EAVA() converts data to a standard input format for cause of death determination building on the work of Thomas (2021) <https://cran.r-project.org/src/contrib/Archive/CrossVA/>. codEAVA() uses the presence and absence of signs and symptoms reported in the Verbal Autopsy interview to diagnose common causes of death. A deterministic algorithm assigns a single cause of death to each Verbal Autopsy interview record using a hierarchy of all common causes for neonates or children 1 to 59 months of age.
This extension of the pattern-oriented modeling framework of the poems package provides a collection of modules and functions customized for modeling disease transmission on a population scale in a spatiotemporally explicit manner. This includes seasonal time steps, dispersal functions that track disease state of dispersers, results objects that store disease states, and a population simulator that includes disease dynamics.
"Evolutionary Virtual Education" - evolved - provides multiple tools to help educators (especially at the graduate level or in advanced undergraduate level courses) apply inquiry-based learning in general evolution classes. In particular, the tools provided include functions that simulate evolutionary processes (e.g., genetic drift, natural selection within a single locus) or concepts (e.g. Hardy-Weinberg equilibrium, phylogenetic distribution of traits). More than only simulating, the package also provides tools for students to analyze (e.g., measuring, testing, visualizing) datasets with characteristics that are common to many fields related to evolutionary biology. Importantly, the package is heavily oriented towards providing tools for inquiry-based learning - where students follow scientific practices to actively construct knowledge. For additional details, see package's vignettes.
Four ensemble-based methods (SMOTEBoost, RUSBoost, UnderBagging, and SMOTEBagging) for class imbalance problem are implemented for binary classification. Such methods adopt ensemble methods and data re-sampling techniques to improve model performance in presence of class imbalance problem. One special feature offers the possibility to choose multiple supervised learning algorithms to build weak learners within ensemble models. References: Nitesh V. Chawla, Aleksandar Lazarevic, Lawrence O. Hall, and Kevin W. Bowyer (2003) <doi:10.1007/978-3-540-39804-2_12>, Chris Seiffert, Taghi M. Khoshgoftaar, Jason Van Hulse, and Amri Napolitano (2010) <doi:10.1109/TSMCA.2009.2029559>, R. Barandela, J. S. Sanchez, R. M. Valdovinos (2003) <doi:10.1007/s10044-003-0192-z>, Shuo Wang and Xin Yao (2009) <doi:10.1109/CIDM.2009.4938667>, Yoav Freund and Robert E. Schapire (1997) <doi:10.1006/jcss.1997.1504>.
The R package proposes extreme value index estimators for heavy tailed models by mean of order p <DOI:10.1016/j.csda.2012.07.019>, peaks over random threshold <DOI:10.57805/revstat.v4i3.37> and a bias-reduced estimator <DOI:10.1080/00949655.2010.547196>. The package also computes moment, generalised Hill <DOI:10.2307/3318416> and mixed moment estimates for the extreme value index. High quantiles and value at risk estimators based on these estimators are implemented.
This package provides tools for importing, analyzing and visualizing ego-centered network data. Supports several data formats, including the export formats of EgoNet', EgoWeb 2.0 and openeddi'. An interactive (shiny) app for the intuitive visualization of ego-centered networks is provided. Also included are procedures for creating and visualizing Clustered Graphs (Lerner 2008 <DOI:10.1109/PACIFICVIS.2008.4475458>).
This package provides a data package containing a database of epidemiological parameters. It stores the data for the epiparameter R package. Epidemiological parameter estimates are extracted from the literature.
Implementation of the scaling functions presented in "General statistical scaling laws for stability in ecological systems" by Clark et al in Ecology Letters <DOI:10.1111/ele.13760>. Includes functions for extrapolating variability, resistance, and resilience across spatial and ecological scales, as well as a basic simulation function for producing time series, and a regression routine for generating unbiased parameter estimates. See the main text of the paper for more details.
Evaluates the performance of binary classifiers. Computes confusion measures (TP, TN, FP, FN), derived measures (TPR, FDR, accuracy, F1, DOR, ..), and area under the curve. Outputs are well suited for nested dataframes.
Addresses tasks along the pipeline from raw data to analysis and visualization for eye-tracking data. Offers several popular types of analyses, including linear and growth curve time analyses, onset-contingent reaction time analyses, as well as several non-parametric bootstrapping approaches. For references to the approach see Mirman, Dixon & Magnuson (2008) <doi:10.1016/j.jml.2007.11.006>, and Barr (2008) <doi:10.1016/j.jml.2007.09.002>.
This package provides a collection of small functions useful for epidemics analysis and infectious disease modelling. This includes computation of basic reproduction numbers from growth rates, generation of hashed labels to anonymize data, and fitting discretized Gamma distributions.
This package provides a novel concept for generating knowledge and gaining insights into laboratory data. You will be able to efficiently and easily explore your laboratory data from different perspectives. Janitza, S., Majumder, M., Mendolia, F., Jeske, S., & Kulmann, H. (2021) <doi:10.1007/s43441-021-00318-4>.
Simulation-based evidence accumulation models for analyzing responses and reaction times in single- and multi-response tasks. The package includes simulation engines for five representative models: the Diffusion Decision Model (DDM), Leaky Competing Accumulator (LCA), Linear Ballistic Accumulator (LBA), Racing Diffusion Model (RDM), and Levy Flight Model (LFM), and extends these frameworks to multi-response settings. The package supports user-defined functions for item-level parameterization and the incorporation of covariates, enabling flexible customization and the development of new model variants based on existing architectures. Inference is performed using simulation-based methods, including Approximate Bayesian Computation (ABC) and Amortized Bayesian Inference (ABI), which allow parameter estimation without requiring tractable likelihood functions. In addition to core inference tools, the package provides modules for parameter recovery, posterior predictive checks, and model comparison, facilitating the study of a wide range of cognitive processes in tasks involving perceptual decision making, memory retrieval, and value-based decision making. Key methods implemented in the package are described in Ratcliff (1978) <doi:10.1037/0033-295X.85.2.59>, Usher and McClelland (2001) <doi:10.1037/0033-295X.108.3.550>, Brown and Heathcote (2008) <doi:10.1016/j.cogpsych.2007.12.002>, Tillman, Van Zandt and Logan (2020) <doi:10.3758/s13423-020-01719-6>, Wieschen, Voss and Radev (2020) <doi:10.20982/tqmp.16.2.p120>, Csilléry, François and Blum (2012) <doi:10.1111/j.2041-210X.2011.00179.x>, Beaumont (2019) <doi:10.1146/annurev-statistics-030718-105212>, and Sainsbury-Dale, Zammit-Mangion and Huser (2024) <doi:10.1080/00031305.2023.2249522>.
Exploratory and descriptive analysis of event based data. Provides methods for describing and selecting process data, and for preparing event log data for process mining. Builds on the S3-class for event logs implemented in the package bupaR'.
Experiences studies are an integral component of the actuarial control cycle. Regardless of the decrement or policyholder behavior of interest, the analyses conducted is often the same. Ultimately, this package aims to reduce time spent writing the same code used for different experience studies, therefore increasing the time for to uncover new insights inherit within the relevant experience.
This package provides simple functions to create constraints for small test assembly problems (e.g. van der Linden (2005, ISBN: 978-0-387-29054-6)) using sparse matrices. Currently, GLPK', lpSolve', Symphony', and Gurobi are supported as solvers. The gurobi package is not available from any mainstream repository; see <https://www.gurobi.com/downloads/>.
Computation of direct, chain and average (bisector) equating coefficients with standard errors using Item Response Theory (IRT) methods for dichotomous items (Battauz (2013) <doi:10.1007/s11336-012-9316-y>, Battauz (2015) <doi:10.18637/jss.v068.i07>). Test scoring can be performed by true score equating and observed score equating methods. DIF detection can be performed using a Wald-type test (Battauz (2019) <doi:10.1007/s10260-018-00442-w>). The package includes tests to assess the stability of the equating transformations (Battauz(2022) <doi:10.1111/stan.12277>).
This package provides tools for integrated sensitivity analysis of evidence factors in observational studies. When an observational study allows for multiple independent or nearly independent inferences which, if vulnerable, are vulnerable to different biases, we have multiple evidence factors. This package provides methods that respect type I error rate control. Examples are provided of integrated evidence factors analysis in a longitudinal study with continuous outcome and in a case-control study. Karmakar, B., French, B., and Small, D. S. (2019)<DOI:10.1093/biomet/asz003>.
Fast implementations of functional enrichment analysis methods using C++ via Rcpp'. Currently provides Over-Representation Analysis (ORA) and Gene Set Enrichment Analysis (GSEA). The multilevel GSEA algorithm is derived from the fgsea package. Methods are described in Subramanian et al. (2005) <doi:10.1073/pnas.0506580102> and Korotkevich et al. (2021) <doi:10.1101/060012>.