Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Facilitates writing computationally reproducible student theses in PDF format that conform to the American Psychological Association (APA) manuscript guidelines (6th Edition). The package currently provides two R Markdown templates for homework and theses at the Psychology Department of the University of Cologne. The package builds on the package papaja but is tailored to the requirements of student theses and omits features for simplicity.
This package provides functions to perform statistical inference in the balanced one-way ANOVA model with a random factor: confidence intervals, prediction interval, and Weerahandi generalized pivotal quantities. References: Burdick & Graybill (1992, ISBN-13: 978-0824786441); Weerahandi (1995) <doi:10.1007/978-1-4612-0825-9>; Lin & Liao (2008) <doi:10.1016/j.jspi.2008.01.001>.
This function takes a vector or matrix of data and smooths the data with an improved Savitzky Golay transform. The Savitzky-Golay method for data smoothing and differentiation calculates convolution weights using Gram polynomials that exactly reproduce the results of least-squares polynomial regression. Use of the Savitzky-Golay method requires specification of both filter length and polynomial degree to calculate convolution weights. For maximum smoothing of statistical noise in data, polynomials with low degrees are desirable, while a high polynomial degree is necessary for accurate reproduction of peaks in the data. Extension of the least-squares regression formalism with statistical testing of additional terms of polynomial degree to a heuristically chosen minimum for each data window leads to an adaptive-degree polynomial filter (ADPF). Based on noise reduction for data that consist of pure noise and on signal reproduction for data that is purely signal, ADPF performed nearly as well as the optimally chosen fixed-degree Savitzky-Golay filter and outperformed sub-optimally chosen Savitzky-Golay filters. For synthetic data consisting of noise and signal, ADPF outperformed both optimally chosen and sub-optimally chosen fixed-degree Savitzky-Golay filters. See Barak, P. (1995) <doi:10.1021/ac00113a006> for more information.
This package provides tools for the multiscale spatial analysis of multivariate data. Several methods are based on the use of a spatial weighting matrix and its eigenvector decomposition (Moran's Eigenvectors Maps, MEM). Several approaches are described in the review Dray et al (2012) <doi:10.1890/11-1183.1>.
Visualize results generated by Antares, a powerful open source software developed by RTE to simulate and study electric power systems (more information about Antares here: <https://github.com/AntaresSimulatorTeam/Antares_Simulator>). This package provides functions that create interactive charts to help Antares users visually explore the results of their simulations.
Calculations of the most common metrics of automated advertisement and plotting of them with trend and forecast. Calculations and description of metrics is taken from different RTB platforms support documentation. Plotting and forecasting is based on packages forecast', described in Rob J Hyndman and George Athanasopoulos (2021) "Forecasting: Principles and Practice" <https://otexts.com/fpp3/> and Rob J Hyndman et al "Documentation for forecast'" (2003) <https://pkg.robjhyndman.com/forecast/>, and ggplot2', described in Hadley Wickham et al "Documentation for ggplot2'" (2015) <https://ggplot2.tidyverse.org/>, and Hadley Wickham, Danielle Navarro, and Thomas Lin Pedersen (2015) "ggplot2: Elegant Graphics for Data Analysis" <https://ggplot2-book.org/>.
Simulate the effect of management or demography on allele retention and inbreeding accumulation in bottlenecked populations of animals with overlapping generations.
Detect several types of aberrant behavior, including answer copying, answer similarity, change point, nonparametric misfit, parametric misfit, preknowledge, rapid guessing, and test tampering.
The image of the amino acid transform on the protein level is drawn, and the automatic routing of the functional elements such as the domain and the mutation site is completed.
Opens and imports log files from Angstrom Engineering Thermal Evaporator and extracts basic characteristics, such as base pressure, time of the evaporation. It can visualize the deposition observables for review.
An interface to Azure CosmosDB': <https://azure.microsoft.com/en-us/services/cosmos-db/>. On the admin side, AzureCosmosR provides functionality to create and manage Cosmos DB instances in Microsoft's Azure cloud. On the client side, it provides an interface to the Cosmos DB SQL API, letting the user store and query documents and attachments in Cosmos DB'. Part of the AzureR family of packages.
An interface to Azure Computer Vision <https://docs.microsoft.com/azure/cognitive-services/Computer-vision/Home> and Azure Custom Vision <https://docs.microsoft.com/azure/cognitive-services/custom-vision-service/home>, building on the low-level functionality provided by the AzureCognitive package. These services allow users to leverage the cloud to carry out visual recognition tasks using advanced image processing models, without needing powerful hardware of their own. Part of the AzureR family of packages.
This package provides functions for calculating the acute chronic workload ratio using three different methods: exponentially weighted moving average (EWMA), rolling average coupled (RAC) and rolling averaged uncoupled (RAU). Examples of this methods can be found in Williams et al. (2017) <doi:10.1136/bjsports-2016-096589> for EWMA and Windt & Gabbet (2018) for RAC and RAU <doi: 10.1136/bjsports-2017-098925>.
Interact with the Attentional Control Data Collection (ACDC). Connect to the database via connect_to_db(), set filter arguments via add_argument() and query the database via query_db().
Which day a week starts depends heavily on the either the local or professional context. This package is designed to be a lightweight solution to easily switching between week-based date definitions.
This package provides functions for estimating the attributable burden of disease due to risk factors. The posterior simulation is performed using arm::sim as described in Gelman, Hill (2012) <doi:10.1017/CBO9780511790942> and the attributable burden method is based on Nielsen, Krause, Molbak <doi:10.1111/irv.12564>.
Increasingly powerful techniques for high-throughput sequencing open the possibility to comprehensively characterize microbial communities, including rare species. However, a still unresolved issue are the substantial error rates in the experimental process generating these sequences. To overcome these limitations we propose an approach, where each sample is split and the same amplification and sequencing protocol is applied to both halves. This procedure should allow to detect likely PCR and sequencing artifacts, and true rare species by comparison of the results of both parts. The AmpliconDuo package, whereas amplicon duo from here on refers to the two amplicon data sets of a split sample, is intended to help interpret the obtained read frequency distribution across split samples, and to filter the false positive reads.
Adaptive wavelet lifting transforms for signal denoising using optimal local neighbourhood regression, from Nunes et al. (2006) <doi:10.1007/s11222-006-6560-y>.
This package provides functions to implement model selection and multimodel inference based on Akaike's information criterion (AIC) and the second-order AIC (AICc), as well as their quasi-likelihood counterparts (QAIC, QAICc) from various model object classes. The package implements classic model averaging for a given parameter of interest or predicted values, as well as a shrinkage version of model averaging parameter estimates or effect sizes. The package includes diagnostics and goodness-of-fit statistics for certain model types including those of unmarkedFit classes estimating demographic parameters after accounting for imperfect detection probabilities. Some functions also allow the creation of model selection tables for Bayesian models of the bugs', rjags', and jagsUI classes. Functions also implement model selection using BIC. Objects following model selection and multimodel inference can be formatted to LaTeX using xtable methods included in the package.
This package provides functions to compute various clinical scores used in healthcare. These include the Charlson Comorbidity Index (CCI), predicting 10-year survival in patients with multiple comorbidities; the EPICES score, an individual indicator of precariousness considering its multidimensional nature; the MELD score for chronic liver disease severity; the Alternative Fistula Risk Score (a-FRS) for postoperative pancreatic fistula risk; and the Distal Pancreatectomy Fistula Risk Score (D-FRS) for risk following distal pancreatectomy. For detailed methodology, refer to Charlson et al. (1987) <doi:10.1016/0021-9681(87)90171-8> , Sass et al. (2006) <doi:10.1007/s10332-006-0131-5>, Kamath et al. (2001) <doi:10.1053/jhep.2001.22172>, Kim et al. (2008) <doi:10.1056/NEJMoa0801209> Kim et al. (2021) <doi:10.1053/j.gastro.2021.08.050>, Mungroop et al. (2019) <doi:10.1097/SLA.0000000000002620>, and de Pastena et al. (2023) <doi:10.1097/SLA.0000000000005497>..
Automates regression testing of package allelematch'. Over 2500 tests covers all functions in allelematch', reproduces the examples from the documentation and includes negative tests. The implementation is based on testthat'.
This package provides functions for implementing the Analysis-of-marginal-Tail-Means (ATM) method, a robust optimization method for discrete black-box optimization. Technical details can be found in Mak and Wu (2018+) <arXiv:1712.03589>. This work was supported by USARO grant W911NF-17-1-0007.
This package provides a spatiotemporal model that simulates the spread of Ascochyta blight in chickpea fields based on location-specific weather conditions. This model is adapted from a model developed by Diggle et al. (2002) <doi:10.1094/PHYTO.2002.92.10.1110> for simulating the spread of anthracnose in a lupin field.
The AFfunction() is a function which returns an estimate of the Attributable Fraction (AF) and a plot of the AF as a function of heritability, disease prevalence, size of target group and intervention effect. Since the AF is a function of several factors, a shiny app is used to better illustrate how the relationship between the AF and heritability depends on several other factors. The app is ran by the function runShinyApp(). For more information see Dahlqwist E et al. (2019) <doi:10.1007/s00439-019-02006-8>.