Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Making available in R the complete set of programs accompanying S. Wellek's (2010) monograph Testing Statistical Hypotheses of Equivalence and Noninferiority. Second Edition (Chapman&Hall/CRC).
Allows users to model and draw inferences from extreme value inflated count data, and to evaluate these models and compare to non extreme-value inflated counterparts. The package is built to be compatible with standard presentation tools such as broom', tidy', and modelsummary'.
Read in and analyze functions for education survey and assessment data from the National Center for Education Statistics (NCES) <https://nces.ed.gov/>, including National Assessment of Educational Progress (NAEP) data <https://nces.ed.gov/nationsreportcard/> and data from the International Assessment Database: Organisation for Economic Co-operation and Development (OECD) <https://www.oecd.org/>, including Programme for International Student Assessment (PISA), Teaching and Learning International Survey (TALIS), Programme for the International Assessment of Adult Competencies (PIAAC), and International Association for the Evaluation of Educational Achievement (IEA) <https://www.iea.nl/>, including Trends in International Mathematics and Science Study (TIMSS), TIMSS Advanced, Progress in International Reading Literacy Study (PIRLS), International Civic and Citizenship Study (ICCS), International Computer and Information Literacy Study (ICILS), and Civic Education Study (CivEd).
This package contains utilities for the analysis of protein sequences in a phylogenetic context. Allows the generation of phylogenetic trees base on protein sequences in an alignment-independent way. Two different methods have been implemented. One approach is based on the frequency analysis of n-grams, previously described in Stuart et al. (2002) <doi:10.1093/bioinformatics/18.1.100>. The other approach is based on the species-specific neighborhood preference around amino acids. Features include the conversion of a protein set into a vector reflecting these neighborhood preferences, pairwise distances (dissimilarity) between these vectors, and the generation of trees based on these distance matrices.
Exploratory principal component analysis for large-scale dataset, including sparse principal component analysis and sparse matrix approximation.
Commonly used classification and regression tree methods like the CART algorithm are recursive partitioning methods that build the model in a forward stepwise search. Although this approach is known to be an efficient heuristic, the results of recursive tree methods are only locally optimal, as splits are chosen to maximize homogeneity at the next step only. An alternative way to search over the parameter space of trees is to use global optimization methods like evolutionary algorithms. The evtree package implements an evolutionary algorithm for learning globally optimal classification and regression trees in R. CPU and memory-intensive tasks are fully computed in C++ while the partykit package is leveraged to represent the resulting trees in R, providing unified infrastructure for summaries, visualizations, and predictions.
This SVG elements generator can easily generate SVG elements such as rect, line, circle, ellipse, polygon, polyline, text and group. Also, it can combine and output SVG elements into a SVG file.
EQ-5D is a popular health related quality of life instrument used in the clinical and economic evaluation of health care. Developed by the EuroQol group <https://euroqol.org/>, the instrument consists of two components: health state description and evaluation. For the description component a subject self-rates their health in terms of five dimensions; mobility, self-care, usual activities, pain/discomfort, and anxiety/depression using either a three-level (EQ-5D-3L, <https://euroqol.org/information-and-support/euroqol-instruments/eq-5d-3l/>) or a five-level (EQ-5D-5L, <https://euroqol.org/information-and-support/euroqol-instruments/eq-5d-5l/>) scale. Frequently the scores on these five dimensions are converted to a single utility index using country specific value sets, which can be used in the clinical and economic evaluation of health care as well as in population health surveys. The eq5d package provides methods to calculate index scores from a subject's dimension scores. 32 TTO and 11 VAS EQ-5D-3L value sets including those for countries in Szende et al (2007) <doi:10.1007/1-4020-5511-0> and Szende et al (2014) <doi:10.1007/978-94-007-7596-1>, 48 EQ-5D-5L EQ-VT value sets, the EQ-5D-5L crosswalk value sets developed by van Hout et al. (2012) <doi:10.1016/j.jval.2012.02.008>, the crosswalk value sets for Bermuda, Jordan and Russia and the van Hout (2021) reverse crosswalk value sets. 11 EQ-5D-Y3L value sets are also included as are the NICE DSU age-sex based EQ-5D-3L to EQ-5D-5L and EQ-5D-5L to EQ-5D-3L mappings. Methods are also included for the analysis of EQ-5D profiles, including those from the book "Methods for Analyzing and Reporting EQ-5D data" by Devlin et al. (2020) <doi:10.1007/978-3-030-47622-9>. Additionally a shiny web tool is included to enable the calculation, visualisation and automated statistical analysis of EQ-5D data via a web browser using EQ-5D dimension scores stored in CSV or Excel files.
The EpiSimR package provides an interactive shiny app based on deterministic compartmental mathematical modeling for simulating and visualizing the dynamics of epidemic and endemic disease spread. It allows users to explore various intervention strategies, including vaccination and isolation, by adjusting key epidemiological parameters. The methodology follows the approach described by Brauer (2008) <doi:10.1007/978-3-540-78911-6_2>. Thanks to shiny package.
Create forecasts from multiple predictions using ensemble Bayesian model averaging (EBMA). EBMA models can be estimated using an expectation maximization (EM) algorithm or as fully Bayesian models via Gibbs sampling. The methods in this package are Montgomery, Hollenbach, and Ward (2015) <doi:10.1016/j.ijforecast.2014.08.001> and Montgomery, Hollenbach, and Ward (2012) <doi:10.1093/pan/mps002>.
An approach and software for modelling marine and freshwater ecosystems. It is articulated entirely around trophic levels. EcoTroph's key displays are bivariate plots, with trophic levels as the abscissa, and biomass flows or related quantities as ordinates. Thus, trophic ecosystem functioning can be modelled as a continuous flow of biomass surging up the food web, from lower to higher trophic levels, due to predation and ontogenic processes. Such an approach, wherein species as such disappear, may be viewed as the ultimate stage in the use of the trophic level metric for ecosystem modelling, providing a simplified but potentially useful caricature of ecosystem functioning and impacts of fishing. This version contains catch trophic spectrum analysis (CTSA) function and corrected versions of the mf.diagnosis and create.ETmain functions.
Facilitates univariate and multivariate analysis of evolutionary sequences of phenotypic change. The package extends the modeling framework available in the paleoTS package. Please see <https://klvoje.github.io/evoTS/index.html> for information about the package and the implemented models.
Package for analysis of simple experimental designs (CRD, RBD and LSD), experiments in double factorial schemes (in CRD and RBD), experiments in a split plot in time schemes (in CRD and RBD), experiments in double factorial schemes with an additional treatment (in CRD and RBD), experiments in triple factorial scheme (in CRD and RBD) and experiments in triple factorial schemes with an additional treatment (in CRD and RBD), performing the analysis of variance and means comparison by fitting regression models until the third power (quantitative treatments) or by a multiple comparison test, Tukey test, test of Student-Newman-Keuls (SNK), Scott-Knott, Duncan test, t test (LSD) and Bonferroni t test (protected LSD) - for qualitative treatments; residual analysis (Ferreira, Cavalcanti and Nogueira, 2014) <doi:10.4236/am.2014.519280>.
This package provides several functions to simplify using the glmnet package: converting data frames into matrices ready for glmnet'; b) imputing missing variables multiple times; c) fitting and applying prediction models straightforwardly; d) assigning observations to folds in a balanced way; e) cross-validate the models; f) selecting the most representative model across imputations and folds; and g) getting the relevance of the model regressors; as described in several publications: Solanes et al. (2022) <doi:10.1038/s41537-022-00309-w>, Palau et al. (2023) <doi:10.1016/j.rpsm.2023.01.001>, Salazar de Pablo et al. (2025) <doi:10.1038/s41380-025-03244-1>.
Implementation of a modular framework for ecosystem risk assessments, combining existing risk assessment approaches tailored to semi-quantitative and quantitative analyses.
Generate citations and references for R packages from CRAN or Bioconductor. Supports RIS and BibTeX formats with automatic DOI retrieval from GitHub repositories and published papers. Includes command-line interface for batch processing.
Conduct one- and two-sample goodness-of-fit tests for univariate data. In the one-sample case, normal, uniform, exponential, Bernoulli, binomial, geometric, beta, Poisson, lognormal, Laplace, asymmetric Laplace, inverse Gaussian, half-normal, chi-squared, gamma, F, Weibull, Cauchy, and Pareto distributions are supported. egof.test() can also test goodness-of-fit to any distribution with a continuous distribution function. A subset of the available distributions can be tested for the composite goodness-of-fit hypothesis, that is, one can test for distribution fit with unknown parameters. P-values are calculated via parametric bootstrap.
This package provides R access to election results data. Wraps elex (https://github.com/newsdev/elex/), a Python package and command line tool for fetching and parsing Associated Press election results.
Support functions for R-based "EQUALCompareImages - Compare similarity between and within images" shiny application which allow researchers without coding skills or expertise in image comparison algorithms to compare images. Gurusamy,K (2025)<doi:10.5281/zenodo.16994047>.
This package provides a set of methods to access and parse live filing information from the U.S. Securities and Exchange Commission (SEC - <https://www.sec.gov/>) including company and fund filings along with all associated metadata.
Distributes samples in batches while making batches homogeneous according to their description. Allows for an arbitrary number of variables, both numeric and categorical. For quality control it provides functions to subset a representative sample.
This package provides several validator functions for checking if arguments passed by users have valid types, lengths, etc. and for generating informative and well-formatted error messages in a consistent style. Also provides tools for users to create their own validator functions. The error message style used is adopted from <https://style.tidyverse.org/error-messages.html>.
Presents two methods to estimate the parameters mu', sigma', and tau of an ex-Gaussian distribution. Those methods are Quantile Maximization Likelihood Estimation ('QMLE') and Bayesian. The QMLE method allows a choice between three different estimation algorithms for these parameters : neldermead ('NEMD'), fminsearch ('FMIN'), and nlminb ('NLMI'). For more details about the methods you can refer at the following list: Brown, S., & Heathcote, A. (2003) <doi:10.3758/BF03195527>; McCormack, P. D., & Wright, N. M. (1964) <doi:10.1037/h0083285>; Van Zandt, T. (2000) <doi:10.3758/BF03214357>; El Haj, A., Slaoui, Y., Solier, C., & Perret, C. (2021) <doi:10.19139/soic-2310-5070-1251>; Gilks, W. R., Best, N. G., & Tan, K. K. C. (1995) <doi:10.2307/2986138>.
This package provides a collection of functions and jamovi module for the estimation approach to inferential statistics, the approach which emphasizes effect sizes, interval estimates, and meta-analysis. Nearly all functions are based on statpsych and metafor'. This package is still under active development, and breaking changes are likely, especially with the plot and hypothesis test functions. Data sets are included for all examples from Cumming & Calin-Jageman (2024) <ISBN:9780367531508>.