Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides simple, fast, and stable functions to fit the normal means model using empirical Bayes. For available models and details, see function ebnm(). Our JSS article, Willwerscheid, Carbonetto, and Stephens (2025) <doi:10.18637/jss.v114.i03>, provides a detailed introduction to the package.
Analysis and visualization of similarities between epilepsy ontologies based on text mining results by comparing ranked lists of co-occurring drug terms in the BioASQ corpus. The ranked result lists of neurological drug terms co-occurring with terms from the epilepsy ontologies EpSO, ESSO, EPILONT, EPISEM and FENICS undergo further analysis. The source data to create the ranked lists of drug names is produced using the text mining workflows described in Mueller, Bernd and Hagelstein, Alexandra (2016) <doi:10.4126/FRL01-006408558>, Mueller, Bernd et al. (2017) <doi:10.1007/978-3-319-58694-6_22>, Mueller, Bernd and Rebholz-Schuhmann, Dietrich (2020) <doi:10.1007/978-3-030-43887-6_52>, and Mueller, Bernd et al. (2022) <doi:10.1186/s13326-021-00258-w>.
Genetic predisposition for complex traits is often manifested through multiple tissues of interest at different time points in the development. As an example, the genetic predisposition for obesity could be manifested through inherited variants that control metabolism through regulation of genes expressed in the brain and/or through the control of fat storage in the adipose tissue by dysregulation of genes expressed in adipose tissue. We present a method eGST (eQTL-based genetic subtyper) that integrates tissue-specific eQTLs with GWAS data for a complex trait to probabilistically assign a tissue of interest to the phenotype of each individual in the study. eGST estimates the posterior probability that an individual's phenotype can be assigned to a tissue based on individual-level genotype data of tissue-specific eQTLs and marginal phenotype data in a genome-wide association study (GWAS) cohort. Under a Bayesian framework of mixture model, eGST employs a maximum a posteriori (MAP) expectation-maximization (EM) algorithm to estimate the tissue-specific posterior probability across individuals. Methodology is available from: A Majumdar, C Giambartolomei, N Cai, MK Freund, T Haldar, T Schwarz, J Flint, B Pasaniuc (2019) <doi:10.1101/674226>.
An interface for performing climate matching using the Euclidean "Climatch" algorithm. Functions provide a vector of climatch scores (0-10) for each location (i.e., grid cell) within the recipient region, the percent of climatch scores >= a threshold value, and mean climatch score. Tools for parallelization and visualizations are also provided. Note that the floor function that rounds the climatch score down to the nearest integer has been removed in this implementation and the â Climatchâ algorithm, also referred to as the â Climateâ algorithm, is described in: Crombie, J., Brown, L., Lizzio, J., & Hood, G. (2008). â Climatch user manualâ . The method for the percent score is described in: Howeth, J.G., Gantz, C.A., Angermeier, P.L., Frimpong, E.A., Hoff, M.H., Keller, R.P., Mandrak, N.E., Marchetti, M.P., Olden, J.D., Romagosa, C.M., and Lodge, D.M. (2016). <doi:10.1111/ddi.12391>.
Easy and rapid quantitative estimation of small terrestrial ectotherm temperature regulation effectiveness in R. ectotemp is built on classical formulas that evaluate temperature regulation by means of various indices, inaugurated by Hertz et al. (1993) <doi: 10.1086/285573>. Options for bootstrapping and permutation testing are included to test hypotheses about divergence between organisms, species or populations.
This framework enables forecasting and extrapolating measures of conditional risk (e.g. of extreme or unprecedented events), including quantiles and exceedance probabilities, using extreme value statistics and flexible neural network architectures. It allows for capturing complex multivariate dependencies, including dependencies between observations, such as sequential dependence (time-series). The methodology was introduced in Pasche and Engelke (2024) <doi:10.1214/24-AOAS1907> (also available in preprint: Pasche and Engelke (2022) <doi:10.48550/arXiv.2208.07590>).
This package provides set of functions aimed at epidemiologists. The package includes commands for measures of association and impact for case control studies and cohort studies. It may be particularly useful for outbreak investigations including univariable analysis and stratified analysis. The functions for cohort studies include the CS(), CSTable() and CSInter() commands. The functions for case control studies include the CC(), CCTable() and CCInter() commands. References - Cornfield, J. 1956. A statistical problem arising from retrospective studies. In Vol. 4 of Proceedings of the Third Berkeley Symposium, ed. J. Neyman, 135-148. Berkeley, CA - University of California Press. Woolf, B. 1955. On estimating the relation between blood group disease. Annals of Human Genetics 19 251-253. Reprinted in Evolution of Epidemiologic Ideas Annotated Readings on Concepts and Methods, ed. S. Greenland, pp. 108-110. Newton Lower Falls, MA Epidemiology Resources. Gilles Desve & Peter Makary, 2007. CSTABLE Stata module to calculate summary table for cohort study Statistical Software Components S456879, Boston College Department of Economics. Gilles Desve & Peter Makary, 2007. CCTABLE Stata module to calculate summary table for case-control study Statistical Software Components S456878, Boston College Department of Economics.
This dataset contains population estimates of all European cities with at least 10,000 inhabitants during the period 1500-1800. These data are adapted from Jan De Vries, "European Urbanization, 1500-1800" (1984).
This package produces tables for descriptive epidemiological analysis. These tables include attack rates, case fatality ratios, and mortality rates (with appropriate confidence intervals), with additional functionality to calculate Mantel-Haenszel odds, risk, and incidence rate ratios. The methods implemented follow standard epidemiological approaches described in Rothman et al. (2008, ISBN:978-0-19-513554-2). This package is part of the R4EPIs project <https://R4EPI.github.io/sitrep/>.
Randomly generate a wide range of interaction networks with specified size, average degree, modularity, and topological structure. Sample nodes and links from within simulated networks randomly, by degree, by module, or by abundance. Simulations and sampling routines are implemented in FORTRAN', providing efficient generation times even for large networks. Basic visualization methods also included. Algorithms implemented here are described in de Aguiar et al. (2017) <arXiv:1708.01242>.
This package provides a unified interface for connecting to databases ('SQLite', MySQL', PostgreSQL'). Just provide the database name and the package will ask you questions to help you configure the connection and setup your credentials. Once database configuration and connection has been set up once, you won't have to do it ever again.
This package performs parallel analysis (Timmerman & Lorenzo-Seva, 2011 <doi:10.1037/a0023353>) and hull method (Lorenzo-Seva, Timmerman, & Kiers, 2011 <doi:10.1080/00273171.2011.564527>) for assessing the dimensionality of a set of variables using minimum rank factor analysis (see ten Berge & Kiers, 1991 <doi:10.1007/BF02294464> for more information). The package also includes the option to compute minimum rank factor analysis by itself, as well as the greater lower bound calculation.
This package provides a methodology simple and trustworthy for the analysis of extreme values and multiple threshold tests for a generalized Pareto distribution, together with an automatic threshold selection algorithm. See del Castillo, J, Daoudi, J and Lockhart, R (2014) <doi:10.1111/sjos.12037>.
Make your shiny application as executable program. Users do not need to install R and shiny on their system.
The EM algorithm is a powerful tool for computing maximum likelihood estimates with incomplete data. This package will help to applying EM algorithm based on triangular and trapezoidal fuzzy numbers (as two kinds of incomplete data). A method is proposed for estimating the unknown parameter in a parametric statistical model when the observations are triangular or trapezoidal fuzzy numbers. This method is based on maximizing the observed-data likelihood defined as the conditional probability of the fuzzy data; for more details and formulas see Denoeux (2011) <doi:10.1016/j.fss.2011.05.022>.
Replication methods to compute some basic statistic operations (means, standard deviations, frequency tables, percentiles, mean comparisons using weighted effect coding, generalized linear models, and linear multilevel models) in complex survey designs comprising multiple imputed or nested imputed variables and/or a clustered sampling structure which both deserve special procedures at least in estimating standard errors. See the package documentation for a more detailed description along with references.
Two classifiers for open set recognition and novelty detection based on extreme value theory. The first classifier is based on the generalized Pareto distribution (GPD) and the second classifier is based on the generalized extreme value (GEV) distribution. For details, see Vignotto, E., & Engelke, S. (2018) <arXiv:1808.09902>.
Implementation of method for estimating excess mortality and other health related outcomes from weekly or daily count data described in Acosta and Irizarry (2021) "A Flexible Statistical Framework for Estimating Excess Mortality".
Import physiologic data stored in the European Data Format (EDF and EDF+) into R. Both EDF and EDF+ files are supported. Discontinuous EDF+ files are not yet supported.
Lactation curves describe temporal changes in milk yield and are key to breeding and managing dairy animals more efficiently. The use of ensemble modeling, which consists of combining predictions from multiple models, has the potential to yields more accurate and robust estimates of lactation patterns than relying solely on single model estimates. The package EMOTIONS fits 47 models for lactation curves and creates ensemble models using model averaging based on Akaike information criterion (AIC), Bayesian information criterion (BIC), root mean square percentage error (RMSPE) and mean squared error (MAE), variance of the predictions, cosine similarity for each model's predictions, and Bayesian Model Average (BMA). The daily production values predicted through the ensemble models can be used to estimate resilience indicators in the package. The package allows the graphical visualization of the model ranks and the predicted lactation curves. Additionally, the packages allows the user to detect milk loss events and estimate residual-based resilience indicators.
This package provides a toolbox to make it easy to analyze plant disease epidemics. It provides a common framework for plant disease intensity data recorded over time and/or space. Implemented statistical methods are currently mainly focused on spatial pattern analysis (e.g., aggregation indices, Taylor and binary power laws, distribution fitting, SADIE and mapcomp methods). See Laurence V. Madden, Gareth Hughes, Franck van den Bosch (2007) <doi:10.1094/9780890545058> for further information on these methods. Several data sets that were mainly published in plant disease epidemiology literature are also included in this package.
Este paquete pretende apoyar el proceso enseñanza-aprendizaje de estadà stica descriptiva e inferencial. Las funciones contenidas en el paquete estadistica cubren los conceptos básicos estudiados en un curso introductorio. Muchos conceptos son ilustrados con gráficos dinámicos o web apps para facilitar su comprensión. This package aims to help the teaching-learning process of descriptive and inferential statistics. The functions contained in the package estadistica cover the basic concepts studied in a statistics introductory course. Many concepts are illustrated with dynamic graphs or web apps to make the understanding easier. See: Esteban et al. (2005, ISBN: 9788497323741), Newbold et al.(2019, ISBN:9781292315034 ), Murgui et al. (2002, ISBN:9788484424673) .
This package provides functions for assigning Clarke or Parkes (Consensus) error grid zones to blood glucose values, and for plotting both types of error grids in both mg/mL and mmol/L units.
Offers a flexible and user-friendly interface for visualizing conditional effects from a broad range of regression models, including mixed-effects and generalized additive (mixed) models. Compatible model types include lm(), rlm(), glm(), glm.nb(), betareg(), and gam() (from mgcv'); nonlinear models via nls(); generalized least squares via gls(); and survival models via coxph() (from survival'). Mixed-effects models with random intercepts and/or slopes can be fitted using lmer(), glmer(), glmer.nb(), glmmTMB(), or gam() (from mgcv', via smooth terms). Plots are rendered using base R graphics with extensive customization options. Approximate confidence intervals for nls() and betareg() models are computed using the delta method. Robust standard errors for rlm() are computed using the sandwich estimator (Zeileis 2004) <doi:10.18637/jss.v011.i10>. For beta regression using betareg', see Cribari-Neto and Zeileis (2010) <doi:10.18637/jss.v034.i02>. For mixed-effects models with lme4', see Bates et al. (2015) <doi:10.18637/jss.v067.i01>. For models using glmmTMB', see Brooks et al. (2017) <doi:10.32614/RJ-2017-066>. Methods for generalized additive models using mgcv follow Wood (2017) <doi:10.1201/9781315370279>.