Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Power analysis is used in the estimation of sample sizes for experimental designs. Most programs and R packages will only output the highest recommended sample size to the user. Often the user input can be complicated and computing multiple power analyses for different treatment comparisons can be time consuming. This package simplifies the user input and allows the user to view all of the sample size recommendations or just the ones they want to see. The calculations used to calculate the recommended sample sizes are from the pwr package.
The R4EPIs project <https://r4epi.github.io/sitrep/> seeks to provide a set of standardized tools for analysis of outbreak and survey data in humanitarian aid settings. This package currently provides standardized data dictionaries from Medecins Sans Frontieres Operational Centre Amsterdam for outbreak scenarios (Acute Jaundice Syndrome, Cholera, Diphtheria, Measles, Meningitis) and surveys (Retrospective mortality and access to care, Malnutrition, Vaccination coverage and Event Based Surveillance) - as described in the following <https://scienceportal.msf.org/assets/standardised-mortality-surveys?utm_source=chatgpt.com>. In addition, a data generator from these dictionaries is provided. It is also possible to read in any Open Data Kit format data dictionary.
Analysis of experimental results and automatic report generation in both interactive HTML and LaTeX. This package ships with a rich interface for data modeling and built in functions for the rapid application of statistical tests and generation of common plots and tables with publish-ready quality.
Datasets from most recent CCIIO DIY entry in a tidy format. These support the Centers for Medicare and Medicaid Services (CMS) risk adjustment Do-It-Yourself (DIY) process, which allows health insurance issuers to calculate member risk profiles under the Health and Human Services-Hierarchical Condition Categories (HHS-HCC) regression model. This regression model is used to calculate risk adjustment transfers. Risk adjustment is a selection mitigation program implemented under the Patient Protection and Affordable Care Act (ACA or Obamacare) in the USA. Under the ACA, health insurance issuers submit claims data to CMS in order for CMS to calculate a risk score under the HHS-HCC regression model. However, CMS does not inform issuers of their average risk score until after the data submission deadline. These data sets can be used by issuers to calculate their average risk score mid-year. More information about risk adjustment and the HHS-HCC model can be found here: <https://www.cms.gov/mmrr/Articles/A2014/MMRR2014_004_03_a03.html>.
This package provides a client for the Environmental Data Initiative repository REST API. The EDI data repository <https://portal.edirepository.org/nis/home.jsp> is for publication and reuse of ecological data with emphasis on metadata accuracy and completeness. It is built upon the PASTA+ software stack <https://pastaplus-core.readthedocs.io/en/latest/index.html#> and was developed in collaboration with the US LTER Network <https://lternet.edu/>. EDIutils includes functions to search and access existing data, evaluate and upload new data, and assist other data management tasks common to repository users.
This package provides functions and data supporting the Eco-Stats text (Warton, 2022, Springer), and solutions to exercises. Functions include tools for using simulation envelopes in diagnostic plots, and a function for diagnostic plots of multivariate linear models. Datasets mentioned in the package are included here (where not available elsewhere) and there is a vignette for each chapter of the text with solutions to exercises.
Ensemble Model Output Statistics to create probabilistic forecasts from ensemble forecasts and weather observations.
Goodness-of-fit tests for discrete multivariate data. It is tested if a given observation is likely to have occurred under the assumption of an ab-initio model. Monte Carlo methods are provided to make the package capable of solving high-dimensional problems.
Automatic generation of quizzes or individual questions as (interactive) forms within rmarkdown or quarto documents based on R/exams exercises.
The experiment selector cross-validated targeted maximum likelihood estimator (ES-CVTMLE) aims to select the experiment that optimizes the bias-variance tradeoff for estimating a causal average treatment effect (ATE) where different experiments may include a randomized controlled trial (RCT) alone or an RCT combined with real-world data. Using cross-validation, the ES-CVTMLE separates the selection of the optimal experiment from the estimation of the ATE for the chosen experiment. The estimated bias term in the selector is a function of the difference in conditional mean outcome under control for the RCT compared to the combined experiment. In order to help include truly unbiased external data in the analysis, the estimated average treatment effect on a negative control outcome may be added to the bias term in the selector. For more details about this method, please see Dang et al. (2022) <arXiv:2210.05802>.
Efficiently impute large scale matrix with missing values via its unbiased low-rank matrix approximation. Our main approach is Hard-Impute algorithm proposed in <https://www.jmlr.org/papers/v11/mazumder10a.html>, which achieves highly computational advantage by truncated singular-value decomposition.
This package contains two functions that are intended to make tuning supervised learning methods easy. The eztune function uses a genetic algorithm or Hooke-Jeeves optimizer to find the best set of tuning parameters. The user can choose the optimizer, the learning method, and if optimization will be based on accuracy obtained through validation error, cross validation, or resubstitution. The function eztune.cv will compute a cross validated error rate. The purpose of eztune_cv is to provide a cross validated accuracy or MSE when resubstitution or validation data are used for optimization because error measures from both approaches can be misleading.
This package contains several functions for equivalence testing and practical significance testing. First, the tsti() command provides an automatic computation of three-sided testing results for a given estimate, standard error, and region of practical equivalence. For details, see Goeman, Solari, & Stijnen (2010) <doi:10.1002/sim.4002> and Isager & Fitzgerald (2024) <doi:10.31234/osf.io/8y925>. Second, the lddtest() command performs logarithmic density discontinuity equivalence testing for regression discontinuity designs. For reference, see Fitzgerald (2025) <doi:10.31222/osf.io/2dgrp_v1>.
Construct the admissible exact intervals for the binomial proportion, the Poisson mean and the total number of subjects with a certain attribute or the total number of the subjects for the hypergeometric distribution. Both one-sided and two-sided intervals are of interest. This package can be used to calculate the intervals constructed methods developed by Wang (2014) <doi:10.5705/ss.2012.257> and Wang (2015) <doi:10.1111/biom.12360>.
This package provides fast dynamic-programming algorithms in C++'/'Rcpp (with pure R fallbacks) for the exact finite-sample distributions and p-values of Christoffersen (1998) independence (IND) and conditional-coverage (CC) VaR backtests. For completeness, it also provides the exact unconditional-coverage (UC) test following Kupiec (1995) via a closed-form binomial enumeration. See Christoffersen (1998) <doi:10.2307/2527341> and Kupiec (1995) <doi:10.3905/jod.1995.407942>.
This package provides classes and helper functions for loading, extracting, converting, manipulating, plotting and aggregating epidemiological parameters for infectious diseases. Epidemiological parameters extracted from the literature are loaded from the epiparameterDB R package.
An index measuring the amount of information brought by forecasts for extreme events, subject to calibration, is computed. This index is originally designed for weather or climate forecasts, but it may be used in other forecasting contexts. This is the implementation of the index in Taillardat et al. (2019) <arXiv:1905.04022>.
This package provides wrap functions to export and import graphics and data frames in R to microsoft office. And This package also provide write out figures with lots of different formats. Since people may work on the platform without GUI support, the package also provide function to easily write out figures to lots of different type of formats. Now this package provide function to extract colors from all types of figures and pdf files.
Given the scores from decision makers, the analytic hierarchy process can be conducted easily.
Support ecological analyses such as ordination and clustering. Contains consistent and easy wrapper functions of stat', vegan', and labdsv packages, and visualisation functions of ordination and clustering.
Test hypotheses and construct confidence intervals for AUC (area under Receiver Operating Characteristic curve) and pAUC (partial area under ROC curve), from the given two samples of test data with disease/healthy subjects. The method used is based on TWO SAMPLE empirical likelihood and PROFILE empirical likelihood, as described in <https://www.ms.uky.edu/~mai/research/eAUC1.pdf>.
This package creates realistic random trajectories in a 3-D space between two given fix points, so-called conditional empirical random walks (CERWs). The trajectory generation is based on empirical distribution functions extracted from observed trajectories (training data) and thus reflects the geometrical movement characteristics of the mover. A digital elevation model (DEM), representing the Earth's surface, and a background layer of probabilities (e.g. food sources, uplift potential, waterbodies, etc.) can be used to influence the trajectories. Unterfinger M (2018). "3-D Trajectory Simulation in Movement Ecology: Conditional Empirical Random Walk". Master's thesis, University of Zurich. <https://www.geo.uzh.ch/dam/jcr:6194e41e-055c-4635-9807-53c5a54a3be7/MasterThesis_Unterfinger_2018.pdf>. Technitis G, Weibel R, Kranstauber B, Safi K (2016). "An algorithm for empirically informed random trajectory generation between two endpoints". GIScience 2016: Ninth International Conference on Geographic Information Science, 9, online. <doi:10.5167/uzh-130652>.
Query NCBI Entrez and retrieve PubMed records in XML or text format. Process PubMed records by extracting and aggregating data from selected fields. A large number of records can be easily downloaded via this simple-to-use interface to the NCBI PubMed API.
Analyzing censored variables usually requires the use of optimization algorithms. This package provides an alternative algebraic approach to the task of determining the expected value of a random censored variable with a known censoring point. Likewise this approach allows for the determination of the censoring point if the expected value is known. These results are derived under the assumption that the variable follows an Epanechnikov kernel distribution with known mean and range prior to censoring. Statistical functions related to the uncensored Epanechnikov distribution are also provided by this package.