Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Computes shrinkage estimators for regression problems. Selects penalty parameter by minimizing bias and variance in the effect estimate, where bias and variance are estimated from the posterior predictive distribution. See Keller and Rice (2017) <doi:10.1093/aje/kwx225> for more details.
The EUNIS habitat classification is a comprehensive pan-European system for habitat identification <https://www.eea.europa.eu/data-and-maps/data/eunis-habitat-classification-1>. This is an R data package providing the EUNIS classification system. The classification is hierarchical and covers all types of habitats from natural to artificial, from terrestrial to freshwater and marine. The habitat types are identified by specific codes, names and descriptions and come with schema crosswalks to other habitat typologies.
Implementation of a function which calculates the empirical excess mass for given \eqn\lambda and given maximal number of modes (excessm()). Offering powerful plot features to visualize empirical excess mass (exmplot()). This includes the possibility of drawing several plots (with different maximal number of modes / cut off values) in a single graph.
This package contains methods for the estimation of Shannon's entropy, variants of Renyi's entropy, mutual information, Kullback-Leibler divergence, and generalized Simpson's indices. The estimators used have a bias that decays exponentially fast.
This package provides a system to facilitate designing comparative (and non-comparative) experiments using the grammar of experimental designs <https://emitanaka.org/edibble-book/>. An experimental design is treated as an intermediate, mutable object that is built progressively by fundamental experimental components like units, treatments, and their relation. The system aids in experimental planning, management and workflow.
Runs ecological niche models over all combinations of user-defined settings (i.e., tuning), performs cross validation to evaluate models, and returns data tables to aid in selection of optimal model settings that balance goodness-of-fit and model complexity. Also has functions to partition data spatially (or not) for cross validation, to plot multiple visualizations of results, to run null models to estimate significance and effect sizes of performance metrics, and to calculate range overlap between model predictions, among others. The package was originally built for Maxent models (Phillips et al. 2006, Phillips et al. 2017), but the current version allows possible extensions for any modeling algorithm. The extensive vignette, which guides users through most package functionality but unfortunately has a file size too big for CRAN, can be found here on the package's Github Pages website: <https://jamiemkass.github.io/ENMeval/articles/ENMeval-2.0-vignette.html>.
This package provides a fast, flexible tool for generating disease surveillance reports from data exported from EpiTrax', a central repository for epidemiological data used by public health officials. It provides functions to manipulate EpiTrax datasets, tailor reports to internal or public use, and export reports in CSV, Excel xlsx', or PDF formats.
Notice: The package EffectStars2 provides a more up-to-date implementation of effect stars! EffectStars provides functions to visualize regression models with categorical response as proposed by Tutz and Schauberger (2013) <doi:10.1080/10618600.2012.701379>. The effects of the variables are plotted with star plots in order to allow for an optical impression of the fitted model.
Obtain Bayesian posterior distributions of dominance hierarchy steepness (Neumann and Fischer (2023) <doi:10.1111/2041-210X.14021>). Steepness estimation is based on Bayesian implementations of either Elo-rating or David's scores.
This package provides functions to extract and process data from the FDA Adverse Event Reporting System (FAERS). It facilitates the conversion of raw FAERS data published after 2014Q3 into structured formats for analysis. See Yang et al. (2022) <doi:10.3389/fphar.2021.772768> for related information.
Variable selection methods have been extensively developed for analyzing highdimensional omics data within both the frequentist and Bayesian frameworks. This package provides implementations of the spike-and-slab quantile (group) LASSO which have been developed along the line of Bayesian hierarchical models but deeply rooted in frequentist regularization methods by utilizing Expectationâ Maximization (EM) algorithm. The spike-and-slab quantile LASSO can handle data irregularity in terms of skewness and outliers in response variables, compared to its non-robust alternative, the spike-and-slab LASSO, which has also been implemented in the package. In addition, procedures for fitting the spike-and-slab quantile group LASSO and its non-robust counterpart have been implemented in the form of quantile/least-square varying coefficient mixed effect models for high-dimensional longitudinal data. The core module of this package is developed in C++'.
Set of wrappers for the ncdf4 package to simplify and extend its reading/writing capabilities into/from multidimensional R arrays.
Dynamic and Interactive Maps with R, powered by leaflet <https://leafletjs.com>. evolMap generates a web page with interactive and dynamic maps to which you can add geometric entities (points, lines or colored geographic areas), and/or markers with optional links between them. The dynamic ability of these maps allows their components to evolve over a continuous period of time or by periods.
This package provides tools for the analysis of epidemiological and surveillance data. Contains functions for directly and indirectly adjusting measures of disease frequency, quantifying measures of association on the basis of single or multiple strata of count data presented in a contingency table, computation of confidence intervals around incidence risk and incidence rate estimates and sample size calculations for cross-sectional, case-control and cohort studies. Surveillance tools include functions to calculate an appropriate sample size for 1- and 2-stage representative freedom surveys, functions to estimate surveillance system sensitivity and functions to support scenario tree modelling analyses.
Maximum likelihood estimation of an extended class of row-column (RC) association models for two-dimensional contingency tables, which are formulated by a condition of reduced rank on a matrix of extended association parameters; see Forcina (2019) <arXiv:1910.13848>. These parameters are defined by choosing the logit type for the row and column variables among four different options and a transformation derived from suitable divergence measures.
This package creates family objects identical to stats family but for new links.
Researchers often use the bootstrap to understand a sample drawn from a population with unknown distribution. The exact bootstrap method is a practical tool for exploring the distribution of small sample size data. For a sample of size n, the exact bootstrap method generates the entire space of n to the power of n resamples and calculates all realizations of the selected statistic. The exactamente package includes functions for implementing two bootstrap methods, the exact bootstrap and the regular bootstrap. The exact_bootstrap() function applies the exact bootstrap method following methodologies outlined in Kisielinska (2013) <doi:10.1007/s00180-012-0350-0>. The regular_bootstrap() function offers a more traditional bootstrap approach, where users can determine the number of resamples. The e_vs_r() function allows users to directly compare results from these bootstrap methods. To augment user experience, exactamente includes the function exactamente_app() which launches an interactive shiny web application. This application facilitates exploration and comparison of the bootstrap methods, providing options for modifying various parameters and visualizing results.
This package provides a set of tools to perform Ecological Niche Modeling with presence-absence data. It includes algorithms for data partitioning, model fitting, calibration, evaluation, selection, and prediction. Other functions help to explore signals of ecological niche using univariate and multivariate analyses, and model features such as variable response curves and variable importance. Unique characteristics of this package are the ability to exclude models with concave quadratic responses, and the option to clamp model predictions to specific variables. These tools are implemented following principles proposed in Cobos et al., (2022) <doi:10.17161/bi.v17i.15985>, Cobos et al., (2019) <doi:10.7717/peerj.6281>, and Peterson et al., (2008) <doi:10.1016/j.ecolmodel.2007.11.008>.
Enhanced False Discovery Rate (EFDR) is a tool to detect anomalies in an image. The image is first transformed into the wavelet domain in order to decorrelate any noise components, following which the coefficients at each resolution are standardised. Statistical tests (in a multiple hypothesis testing setting) are then carried out to find the anomalies. The power of EFDR exceeds that of standard FDR, which would carry out tests on every wavelet coefficient: EFDR choose which wavelets to test based on a criterion described in Shen et al. (2002). The package also provides elementary tools to interpolate spatially irregular data onto a grid of the required size. The work is based on Shen, X., Huang, H.-C., and Cressie, N. Nonparametric hypothesis testing for a spatial signal. Journal of the American Statistical Association 97.460 (2002): 1122-1140.
Providing easy, portable access to NASA EarthData products through the use of bearer tokens. Much of NASA's public data catalogs hosted and maintained by its 12 Distributed Active Archive Centers ('DAACs') are now made available on the Amazon Web Services S3 storage. However, accessing this data through the standard S3 API is restricted to only to compute resources running inside us-west-2 Data Center in Portland, Oregon, which allows NASA to avoid being charged data egress rates. This package provides public access to the data from any networked device by using the EarthData login application programming interface (API), <https://www.earthdata.nasa.gov/data/earthdata-login>, providing convenient authentication and access to cloud-hosted NASA EarthData products. This makes access to a wide range of earth observation data from any location straight forward and compatible with R packages that are widely used with cloud native earth observation data (such as terra', sf', etc.).
This extension of the pattern-oriented modeling framework of the poems package provides a collection of modules and functions customized for modeling disease transmission on a population scale in a spatiotemporally explicit manner. This includes seasonal time steps, dispersal functions that track disease state of dispersers, results objects that store disease states, and a population simulator that includes disease dynamics.
This package provides a C++ implementation of the following evolutionary algorithms: Bat Algorithm (Yang, 2010 <doi:10.1007/978-3-642-12538-6_6>), Cuckoo Search (Yang, 2009 <doi:10.1109/nabic.2009.5393690>), Genetic Algorithms (Holland, 1992, ISBN:978-0262581110), Gravitational Search Algorithm (Rashedi et al., 2009 <doi:10.1016/j.ins.2009.03.004>), Grey Wolf Optimization (Mirjalili et al., 2014 <doi:10.1016/j.advengsoft.2013.12.007>), Harmony Search (Geem et al., 2001 <doi:10.1177/003754970107600201>), Improved Harmony Search (Mahdavi et al., 2007 <doi:10.1016/j.amc.2006.11.033>), Moth-flame Optimization (Mirjalili, 2015 <doi:10.1016/j.knosys.2015.07.006>), Particle Swarm Optimization (Kennedy et al., 2001 ISBN:1558605959), Simulated Annealing (Kirkpatrick et al., 1983 <doi:10.1126/science.220.4598.671>), Whale Optimization Algorithm (Mirjalili and Lewis, 2016 <doi:10.1016/j.advengsoft.2016.01.008>). EmiR can be used not only for unconstrained optimization problems, but also in presence of inequality constrains, and variables restricted to be integers.
Estimates coefficients of extended LASSO penalized linear regression and generalized linear models. Currently lasso and elastic net penalized linear regression and generalized linear models are considered. This package currently utilizes an accurate approximation of L1 penalty and then a modified Jacobi algorithm to estimate the coefficients. There is provision for plotting of the solutions and predictions of coefficients at given values of lambda. This package also contains functions for cross validation to select a suitable lambda value given the data. Also provides a function for estimation in fused lasso penalized linear regression. For more details, see Mandal, B. N.(2014). Computational methods for L1 penalized GLM model fitting, unpublished report submitted to Macquarie University, NSW, Australia.
Padroniza endereços brasileiros a partir de diferentes critérios. Os métodos de padronização incluem apenas manipulações básicas de strings, não oferecendo suporte a correspondências probabilà sticas entre strings. (Standardizes brazilian addresses using different criteria. Standardization methods include only basic string manipulation, not supporting probabilistic matches between strings.).