Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
An R interface to United States Environmental Protection Agency (EPA) Environmental Compliance History Online ('ECHO') Application Program Interface (API). ECHO provides information about EPA permitted facilities, discharges, and other reporting info associated with permitted entities. Data are obtained from <https://echo.epa.gov/>.
Create encrypted html files that are fully self contained and do not require any additional software. Using the package you can encrypt arbitrary html files and also directly create encrypted rmarkdown html reports.
This package provides a shiny-based front end (the ExPanD app) and a set of functions for exploratory data analysis. Run as a web-based app, ExPanD enables users to assess the robustness of empirical evidence without providing them access to the underlying data. You can export a notebook containing the analysis of ExPanD and/or use the functions of the package to support your exploratory data analysis workflow. Refer to the vignettes of the package for more information on how to use ExPanD and/or the functions of this package.
This package implements choice models based on economic theory, including estimation using Markov chain Monte Carlo (MCMC), prediction, and more. Its usability is inspired by ideas from tidyverse'. Models include versions of the Hierarchical Multinomial Logit and Multiple Discrete-Continous (Volumetric) models with and without screening. The foundations of these models are described in Allenby, Hardt and Rossi (2019) <doi:10.1016/bs.hem.2019.04.002>. Models with conjunctive screening are described in Kim, Hardt, Kim and Allenby (2022) <doi:10.1016/j.ijresmar.2022.04.001>. Models with set-size variation are described in Hardt and Kurz (2020) <doi:10.2139/ssrn.3418383>.
This package implements the Bayesian and likelihood methods proposed in Imai, Lu, and Strauss (2008 <doi:10.1093/pan/mpm017>) and (2011 <doi:10.18637/jss.v042.i05>) for ecological inference in 2 by 2 tables as well as the method of bounds introduced by Duncan and Davis (1953). The package fits both parametric and nonparametric models using either the Expectation-Maximization algorithms (for likelihood models) or the Markov chain Monte Carlo algorithms (for Bayesian models). For all models, the individual-level data can be directly incorporated into the estimation whenever such data are available. Along with in-sample and out-of-sample predictions, the package also provides a functionality which allows one to quantify the effect of data aggregation on parameter estimation and hypothesis testing under the parametric likelihood models.
Make your shiny application as executable program. Users do not need to install R and shiny on their system.
This package provides a non-parametric framework based on estimation statistics principle. Its main purpose is to infer orders of empirical distributions from different categories based on a probability of finding a value in one distribution that is greater than an expectation of another distribution. Given a set of ordered-pair of real-category values the framework is capable of 1) inferring orders of domination of categories and representing orders in the form of a graph; 2) estimating magnitude of difference between a pair of categories in forms of mean-difference confidence intervals; and 3) visualizing domination orders and magnitudes of difference of categories. The publication of this package is at Chainarong Amornbunchornvej, Navaporn Surasvadi, Anon Plangprasopchok, and Suttipong Thajchayapong (2020) <doi:10.1016/j.heliyon.2020.e05435>.
This package contains all data sets for Exam PA: Predictive Analytics at <https://exampa.net/>.
An implementation of 1) the tail pairwise dependence matrix (TPDM) as described in Jiang & Cooley (2020) <doi:10.1175/JCLI-D-19-0413.1> 2) the extremal pattern index (EPI) as described in Szemkus & Friederichs ('Spatial patterns and indices for heatwave and droughts over Europe using a decomposition of extremal dependency'; submitted to ASCMO 2023).
User friendly interface based on the R package gstat to fit exponential parametric models to empirical semi-variograms in order to model the spatial correlation structure of health data. Geo-located health outcomes of survey participants may be used to model spatial effects on health in an ego-centred approach. The package contains a range of functions to help explore the spatial structure of the data as well as visualize the fit of exponential models for various metaparameter combinations with respect to the number of lag intervals and maximal distance. Furthermore, the outcome of interest can be adjusted for covariates by fitting a linear regression in a preliminary step before the semi-variogram fitting process.
This package provides a principled framework for sampling Virtual Control Group (VCG) using energy distance-based covariate balancing. The package offers visualization tools to assess covariate balance and includes a permutation test to evaluate the statistical significance of observed deviations.
This package provides tools to analyse human and mosquito behavioral interactions and to compute exposure to mosquito bites estimates. Using behavioral data for human individuals and biting patterns for mosquitoes, you will be able to compute hourly exposure for bed net users and non-users, and summarize (e.g. proportion indoors and outdoors, proportion per time periods, and proportion prevented by bed nets) or visualize these dynamics across a 24-hour cycle.
This package provides convenience functions for researching experiences including user, customer, patient, employee, and other human experiences. It provides a suite of tools to simplify data exploration such as benchmarking, comparing groups, and checking for differences. The outputs translate statistical approaches in applied experience research to human readable output.
This package contains all the datasets that were used in Social Science Experiments: A Hands-On Introduction and in its R Companion. Relevant materials can be found at <https://osf.io/b78je>.
This package provides a consistent, unified and extensible framework for estimation of parameters for probability distributions, including parameter estimation procedures that allow for weighted samples; the current set of distributions included are: the standard beta, The four-parameter beta, Burr, gamma, Gumbel, Johnson SB and SU, Laplace, logistic, normal, symmetric truncated normal, truncated normal, symmetric-reflected truncated beta, standard symmetric-reflected truncated beta, triangular, uniform, and Weibull distributions; decision criteria and selections based on these decision criteria.
This package provides a tool to run Monte Carlo simulation of catastrophe model event loss tables, using a Poisson frequency and Beta severity distribution.
Facilitates the aggregation of species geographic ranges from vector or raster spatial data, and that enables the calculation of various morphological and phylogenetic community metrics across geography. Citation: Title, PO, DL Swiderski and ML Zelditch (2022) <doi:10.1111/2041-210X.13914>.
Reads water network simulation data in Epanet text-based .inp and .rpt formats into R. Also reads results from Epanet-msx'. Provides basic summary information and plots. The README file has a quick introduction. See <https://www.epa.gov/water-research/epanet> for more information on the Epanet software for modeling hydraulic and water quality behavior of water piping systems.
This package provides a convenient toolbox to import data exported from Electronic Data Capture (EDC) software TrialMaster'.
Unsupervised, multivariate, binary clustering for meaningful annotation of data, taking into account the uncertainty in the data. A specific constructor for trajectory analysis in movement ecology yields behavioural annotation of trajectories based on estimated local measures of velocity and turning angle, eventually with solar position covariate as a daytime indicator, ("Expectation-Maximization Binary Clustering for Behavioural Annotation").
The Australian Regulatory Guidelines for Prescription Medicines (ARGPM), guidance on "Stability testing for prescription medicines", recommends to predict the shelf life of chemically derived medicines from stability data by taking the worst case situation at batch release into account. Consequently, if a change over time is observed, a release limit needs to be specified. Finding a release limit and the associated shelf life is supported, as well as the standard approach that is recommended by guidance Q1E "Evaluation of stability data" from the International Council for Harmonisation (ICH).
Open source data allows for reproducible research and helps advance our knowledge. The purpose of this package is to collate open source ophthalmic data sets curated for direct use. This is real life data of people with intravitreal injections with anti-vascular endothelial growth factor (anti-VEGF), due to age-related macular degeneration or diabetic macular edema. Associated publications of the data sets: Fu et al. (2020) <doi:10.1001/jamaophthalmol.2020.5044>, Moraes et al (2020) <doi:10.1016/j.ophtha.2020.09.025>, Fasler et al. (2019) <doi:10.1136/bmjopen-2018-027441>, Arpa et al. (2020) <doi:10.1136/bjophthalmol-2020-317161>, Kern et al. 2020, <doi:10.1038/s41433-020-1048-0>.
This is the course package for the exercise portion of the "Ecological Data Collection and Processing" course.
This package contains methods for observed-score linking and equating under the single-group, equivalent-groups, and nonequivalent-groups with anchor test(s) designs. Equating types include identity, mean, linear, general linear, equipercentile, circle-arc, and composites of these. Equating methods include synthetic, nominal weights, Tucker, Levine observed score, Levine true score, Braun/Holland, frequency estimation, and chained equating. Plotting and summary methods, and methods for multivariate presmoothing and bootstrap error estimation are also provided.