Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
An assistant built on large language models that helps interpret statistical model outputs in R by generating concise, audience-specific explanations.
Implementation of the scaling functions presented in "General statistical scaling laws for stability in ecological systems" by Clark et al in Ecology Letters <DOI:10.1111/ele.13760>. Includes functions for extrapolating variability, resistance, and resilience across spatial and ecological scales, as well as a basic simulation function for producing time series, and a regression routine for generating unbiased parameter estimates. See the main text of the paper for more details.
This package provides convenience functions for researching experiences including user, customer, patient, employee, and other human experiences. It provides a suite of tools to simplify data exploration such as benchmarking, comparing groups, and checking for differences. The outputs translate statistical approaches in applied experience research to human readable output.
This package contains the example EEG data used in the package eegkit. Also contains code for easily creating larger EEG datasets from the EEG Database on the UCI Machine Learning Repository.
Support for measurement errors in R vectors, matrices and arrays: automatic uncertainty propagation and reporting. Documentation about errors is provided in the paper by Ucar, Pebesma & Azcorra (2018, <doi:10.32614/RJ-2018-075>), included in this package as a vignette; see citation("errors") for details.
Constructs a shiny app function with interactive displays for summary and analysis of variance regression tables, and parallel coordinate plots of data and residuals.
Estimate a total causal effect from observational data under linearity and causal sufficiency. The observational data is supposed to be generated from a linear structural equation model (SEM) with independent and additive noise. The underlying causal DAG associated the SEM is required to be known up to a maximally oriented partially directed graph (MPDAG), which is a general class of graphs consisting of both directed and undirected edges, including CPDAGs (i.e., essential graphs) and DAGs. Such graphs are usually obtained with structure learning algorithms with added background knowledge. The program is able to estimate every identified effect, including single and multiple treatment variables. Moreover, the resulting estimate has the minimal asymptotic covariance (and hence shortest confidence intervals) among all estimators that are based on the sample covariance.
EM algorithms and several efficient initialization methods for model-based clustering of finite mixture Gaussian distribution with unstructured dispersion in both of unsupervised and semi-supervised learning.
Two methods for performing equivalence test for the means of two (test and reference) normal distributions are implemented. The null hypothesis of the equivalence test is that the absolute difference between the two means are greater than or equal to the equivalence margin and the alternative is that the absolute difference is less than the margin. Given that the margin is often difficult to obtain a priori, it is assumed to be a constant multiple of the standard deviation of the reference distribution. The first method assumes a fixed margin which is a constant multiple of the estimated standard deviation of the reference data and whose variability is ignored. The second method takes into account the margin variability. In addition, some tools to summarize and illustrate the data and test results are included to facilitate the evaluation of the data and interpretation of the results.
This package implements several algorithms for bundling edges in networks and flow and metro map layouts. This includes force directed edge bundling <doi:10.1111/j.1467-8659.2009.01450.x>, a flow algorithm based on Steiner trees<doi:10.1080/15230406.2018.1437359> and a multicriteria optimization method for metro map layouts <doi:10.1109/TVCG.2010.24>.
Application of Ensemble Empirical Mode Decomposition and its variant based Support Vector regression model for univariate time series forecasting. For method details see Das (2020).<http://krishi.icar.gov.in/jspui/handle/123456789/44138>.
Set of functions to keep track and find objects in user-defined environments by identifying environments by name --which cannot be retrieved with the built-in function environmentName(). The package also provides functionality to obtain simplified information about function calling chains and to get an object's memory address.
The main functions are emmreml', and emmremlMultiKernel'. emmreml solves a mixed model with known covariance structure using the EMMA algorithm. emmremlMultiKernel is a wrapper for emmreml to handle multiple random components with known covariance structures. The function emmremlMultivariate solves a multivariate gaussian mixed model with known covariance structure using the ECM algorithm.
This package provides a novel concept for generating knowledge and gaining insights into laboratory data. You will be able to efficiently and easily explore your laboratory data from different perspectives. Janitza, S., Majumder, M., Mendolia, F., Jeske, S., & Kulmann, H. (2021) <doi:10.1007/s43441-021-00318-4>.
It is important to ensure that sensitive data is protected. This straightforward package is aimed at the end-user. Strong RSA encryption using a public/private key pair is used to encrypt data frame or tibble columns. A public key can be shared to allow others to encrypt data to be sent to you. This is particularly aimed a healthcare settings so patient data can be pseudonymised.
Allows to calculate the probabilities of occurrences of an event in a great number of repetitions of Bernoulli experiment, through the application of the local and the integral theorem of De Moivre Laplace, and the theorem of Poisson. Gives the possibility to show the results graphically and analytically, and to compare the results obtained by the application of the above theorems with those calculated by the direct application of the Binomial formula. Is basically useful for educational purposes.
Reliable and rapid ethnicity annotation from whole exome and targeted sequencing data.
This package provides a tool which allows users to create and evaluate ensembles of species distribution model (SDM) predictions. Functionality is offered through R functions or a GUI (R Shiny app). This tool can assist users in identifying spatial uncertainties and making informed conservation and management decisions. The package is further described in Woodman et al (2019) <doi:10.1111/2041-210X.13283>.
Computes the most important properties of four Bayesian early gating designs (two single arm and two randomized controlled designs), such as minimum required number of successes in the experimental group to make a GO decision, operating characteristics and average operating characteristics with respect to the sample size. These might aid in deciding what design to use for the early phase trial.
The purpose of this package is to generate trees and validate unverified code. Trees are made by parsing a statement into a verification tree data structure. This will make it easy to port the statement into another language. Safe statement evaluations are done by executing the verification trees.
Computation of direct, chain and average (bisector) equating coefficients with standard errors using Item Response Theory (IRT) methods for dichotomous items (Battauz (2013) <doi:10.1007/s11336-012-9316-y>, Battauz (2015) <doi:10.18637/jss.v068.i07>). Test scoring can be performed by true score equating and observed score equating methods. DIF detection can be performed using a Wald-type test (Battauz (2019) <doi:10.1007/s10260-018-00442-w>). The package includes tests to assess the stability of the equating transformations (Battauz(2022) <doi:10.1111/stan.12277>).
Null models to analyse ecological networks (e.g. food webs, flower-visitation networks, seed-dispersal networks) and detect resource preferences or non-random interactions among network nodes. Tools are provided to run null models, test for and plot preferences, plot and analyse bipartite networks, and export null model results in a form compatible with other network analysis packages. The underlying null model was developed by Agusti et al. (2003) Molecular Ecology <doi:10.1046/j.1365-294X.2003.02014.x> and the full application to ecological networks by Vaughan et al. (2018) econullnetr: an R package using null models to analyse the structure of ecological networks and identify resource selection. Methods in Ecology & Evolution, <doi:10.1111/2041-210X.12907>.
This package implements the Polynomial Maximization Method ('PMM') for parameter estimation in linear and time series models when error distributions deviate from normality. The PMM2 variant achieves lower variance parameter estimates compared to ordinary least squares ('OLS') when errors exhibit significant skewness. Includes methods for linear regression, AR'/'MA'/'ARMA'/'ARIMA models, and bootstrap inference. Methodology described in Zabolotnii, Warsza, and Tkachenko (2018) <doi:10.1007/978-3-319-77179-3_75>, Zabolotnii, Tkachenko, and Warsza (2022) <doi:10.1007/978-3-031-03502-9_37>, and Zabolotnii, Tkachenko, and Warsza (2023) <doi:10.1007/978-3-031-25844-2_21>.
Empirical likelihood ratio tests for the Yang and Prentice (short/long term hazards ratio) model. Empirical likelihood tests within a Cox model, for parameters defined via both baseline hazard function and regression parameters.