Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Allows calculating global scores for characteristics of visual stimuli as assessed by human raters. Stimuli are presented as sequence of pairwise comparisons ('contests'), during each of which a rater expresses preference for one stimulus over the other (forced choice). The algorithm for calculating global scores is based on Elo rating, which updates individual scores after each single pairwise contest. Elo rating is widely used to rank chess players according to their performance. Its core feature is that dyadic contests with expected outcomes lead to smaller changes of participants scores than outcomes that were unexpected. As such, Elo rating is an efficient tool to rate individual stimuli when a large number of such stimuli are paired against each other in the context of experiments where the goal is to rank stimuli according to some characteristic of interest. Clark et al (2018) <doi:10.1371/journal.pone.0190393> provide details.
This is the course package for the exercise portion of the "Ecological Data Collection and Processing" course.
This package provides a user friendly, easy to understand way of doing event history regression for marginal estimands of interest, including the cumulative incidence and the restricted mean survival, using the pseudo observation framework for estimation. For a review of the methodology, see Andersen and Pohar Perme (2010) <doi:10.1177/0962280209105020> or Sachs and Gabriel (2022) <doi:10.18637/jss.v102.i09>. The interface uses the well known formulation of a generalized linear model and allows for features including plotting of residuals, the use of sampling weights, and corrected variance estimation.
This package provides a client for the Environmental Data Initiative repository REST API. The EDI data repository <https://portal.edirepository.org/nis/home.jsp> is for publication and reuse of ecological data with emphasis on metadata accuracy and completeness. It is built upon the PASTA+ software stack <https://pastaplus-core.readthedocs.io/en/latest/index.html#> and was developed in collaboration with the US LTER Network <https://lternet.edu/>. EDIutils includes functions to search and access existing data, evaluate and upload new data, and assist other data management tasks common to repository users.
This package provides an R interface to the Evolution API <https://evoapicloud.com>, enabling sending and receiving WhatsApp messages directly from R'. Functions include sending text, images, documents, stickers, geographic locations, and interactive messages (lists). Also includes webhook parsing utilities and channel health checks.
Recently many new p-value based multiple test procedures have been proposed, and these new methods are more powerful than the widely used Hochberg procedure. These procedures strongly control the familywise error rate (FWER). This is a comprehensive collection of p-value based FWER-control stepwise multiple test procedures, including six procedure families and thirty multiple test procedures. In this collection, the conservative Hochberg procedure, linear time Hommel procedures, asymptotic Rom procedure, Gou-Tamhane-Xi-Rom procedures, and Quick procedures are all developed in recent five years since 2014. The package name "elitism" is an acronym of "e"quipment for "l"ogarithmic and l"i"near "ti"me "s"tepwise "m"ultiple hypothesis testing. See Gou, J. (2022), "Quick multiple test procedures and p-value adjustments", Statistics in Biopharmaceutical Research 14(4), 636-650.
Utilities for building certain kinds of common matrices and models in the extended structural equation modeling package, OpenMx'.
Set of tools to simplify application of atomic forecast verification metrics for (comparative) verification of ensemble forecasts to large data sets. The forecast metrics are imported from the SpecsVerification package, and additional forecast metrics are provided with this package. Alternatively, new user-defined forecast scores can be implemented using the example scores provided and applied using the functionality of this package.
Package computes and displays tables with support for SPSS'-style labels, multiple and nested banners, weights, multiple-response variables and significance testing. There are facilities for nice output of tables in knitr', Shiny', *.xlsx files, R and Jupyter notebooks. Methods for labelled variables add value labels support to base R functions and to some functions from other packages. Additionally, the package brings popular data transformation functions from SPSS Statistics and Excel': RECODE', COUNT', COUNTIF', VLOOKUP and etc. These functions are very useful for data processing in marketing research surveys. Package intended to help people to move data processing from Excel and SPSS to R.
This package performs a compact genetic algorithm search to reduce errors-in-variables bias in linear regression. The algorithm estimates the regression parameters with lower biases and higher variances but mean-square errors (MSEs) are reduced.
Calculates several indices, such as of diversity, fluctuation, etc., and they are used to estimate ecological indicators.
Testing for parallel trends is crucial in the Difference-in-Differences framework. To this end, this package performs equivalence testing in the context of Difference-in-Differences estimation. It allows users to test if pre-treatment trends in the treated group are â equivalentâ to those in the control group. Here, â equivalenceâ means that rejection of the null hypothesis implies that a function of the pre-treatment placebo effects (maximum absolute, average or root mean squared value) does not exceed a pre-specified threshold below which trend differences are considered negligible. The package is based on the theory developed in Dette & Schumann (2024) <doi:10.1080/07350015.2024.2308121>.
Simultaneous modeling of the quantile and the expected shortfall of a response variable given a set of covariates, see Dimitriadis and Bayer (2019) <doi:10.1214/19-EJS1560>.
An eikosogram (ancient Greek for probability picture) divides the unit square into rectangular regions whose areas, sides, and widths represent various probabilities associated with the values of one or more categorical variates. Rectangle areas are joint probabilities, widths are always marginal (though possibly joint margins, i.e. marginal joint distributions of two or more variates), and heights of rectangles are always conditional probabilities. Eikosograms embed the rules of probability and are useful for introducing elementary probability theory, including axioms, marginal, conditional, and joint probabilities, and their relationships (including Bayes theorem as a completely trivial consequence). They provide advantages over Venn diagrams for this purpose, particularly in distinguishing probabilistic independence, mutually exclusive events, coincident events, and associations. They also are useful for identifying and understanding conditional independence structure. Eikosograms can be thought of as mosaic plots when only two categorical variates are involved; the layout is quite different when there are more than two variates. Only one categorical variate, designated the "response", presents on the vertical axis and all others, designated the "conditioning" variates, appear on the horizontal. In this way, conditional probability appears only as height and marginal probabilities as widths. The eikosogram is ideal for response models (e.g. logistic models) but equally useful when no variate is distinguished as the response. In such cases, each variate can appear in turn as the response, which is handy for assessing conditional independence in discrete graphical models (i.e. "Bayesian networks" or "BayesNets"). The eikosogram and its value over Venn diagrams in teaching probability is described in W.H. Cherry and R.W. Oldford (2003) <https://math.uwaterloo.ca/~rwoldfor/papers/eikosograms/paper.pdf>, its value in exploring conditional independence structure and relation to graphical and log-linear models is described in R.W. Oldford (2003) <https://math.uwaterloo.ca/~rwoldfor/papers/eikosograms/independence/paper.pdf>, and a number of problems, puzzles, and paradoxes that are easily explained with eikosograms are given in R.W. Oldford (2003) <https://math.uwaterloo.ca/~rwoldfor/papers/eikosograms/examples/paper.pdf>.
Constructing niche models and analyzing patterns of niche evolution. Acts as an interface for many popular modeling algorithms, and allows users to conduct Monte Carlo tests to address basic questions in evolutionary ecology and biogeography. Warren, D.L., R.E. Glor, and M. Turelli (2008) <doi:10.1111/j.1558-5646.2008.00482.x> Glor, R.E., and D.L. Warren (2011) <doi:10.1111/j.1558-5646.2010.01177.x> Warren, D.L., R.E. Glor, and M. Turelli (2010) <doi:10.1111/j.1600-0587.2009.06142.x> Cardillo, M., and D.L. Warren (2016) <doi:10.1111/geb.12455> D.L. Warren, L.J. Beaumont, R. Dinnage, and J.B. Baumgartner (2019) <doi:10.1111/ecog.03900>.
This package provides a collection of nice plotting functions directly from a data.frame with limited customisation possibilities.
Descriptive analysis is essential for publishing medical articles. This package provides an easy way to conduct the descriptive analysis. 1. Both numeric and factor variables can be handled. For numeric variables, normality test will be applied to choose the parametric and nonparametric test. 2. Both two or more groups can be handled. For groups more than two, the post hoc test will be applied, Tukey for the numeric variables and FDR for the factor variables. 3. T test, ANOVA or Fisher test can be forced to apply. 4. Mean and standard deviation can be forced to display.
Estimation for high conditional quantiles based on quantile regression.
Implementation of Energy Trees, a statistical model to perform classification and regression with structured and mixed-type data. The model has a similar structure to Conditional Trees, but brings in Energy Statistics to test independence between variables that are possibly structured and of different nature. Currently, the package covers functions and graphs as structured covariates. It builds upon partykit to provide functionalities for fitting, printing, plotting, and predicting with Energy Trees. Energy Trees are described in Giubilei et al. (2022) <arXiv:2207.04430>.
This package implements the Ebrahim-Farrington goodness-of-fit test for logistic regression models, particularly effective for sparse data and binary outcomes. This test provides an improved alternative to the traditional Hosmer-Lemeshow test by using a modified Pearson chi-square statistic with data-dependent grouping. The test is based on Farrington (1996) theoretical framework but simplified for practical implementation with binary data. Includes functions for both the original Farrington test (for grouped data) and the new Ebrahim-Farrington test (for binary data with automatic grouping). For more details see Hosmer (1980) <doi:10.1080/03610928008827941> and Farrington (1996) <doi:10.1111/j.2517-6161.1996.tb02086.x>.
Fits extreme value mixture models, which are models for tails not requiring selection of a threshold, for continuous data. It includes functions for model comparison, estimation of quantity of interest in extreme value analysis and plotting. Reference: CN Behrens, HF Lopes, D Gamerman (2004) <doi:10.1191/1471082X04st075oa>. FF do Nascimento, D. Gamerman, HF Lopes <doi:10.1007/s11222-011-9270-z>.
Easily create interactive charts by leveraging the Echarts Javascript library which includes 36 chart types, themes, Shiny proxies and animations.
Build experience life tables.
Estimation of the sample univariate, cross and return time extremograms. The package can also adds empirical confidence bands to each of the extremogram plots via a permutation procedure under the assumption that the data are independent. Finally, the stationary bootstrap allows us to construct credible confidence bands for the extremograms.