Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Chat with large language models from a range of providers including Claude <https://claude.ai>, OpenAI <https://chatgpt.com>, and more. Supports streaming, asynchronous calls, tool calling, and structured data extraction.
This package provides a set of extensions for the ergm package to fit multilayer/multiplex/multirelational networks and samples of multiple networks. ergm.multi is a part of the Statnet suite of packages for network analysis. See Krivitsky, Koehly, and Marcum (2020) <doi:10.1007/s11336-020-09720-7> and Krivitsky, Coletti, and Hens (2023) <doi:10.1080/01621459.2023.2242627>.
Special functions that enhance other mixed effect model packages by creating overlayed, reduced rank, and reduced model matrices together with multiple data sets to practice the use of these models. For more details see Covarrubias-Pazaran (2016) <doi:10.1371/journal.pone.0156744>.
Extra strength glue for data-driven templates. String interpolation for Shiny apps or R Markdown and knitr'-powered Quarto documents, built on the glue and whisker packages.
Analysis of temporal changes (i.e. dynamics) of ecological entities, defined as trajectories on a chosen multivariate space, by providing a set of trajectory metrics and visual representations [De Caceres et al. (2019) <doi:10.1002/ecm.1350>; and Sturbois et al. (2021) <doi:10.1016/j.ecolmodel.2020.109400>]. Includes functions to estimate metrics for individual trajectories (length, directionality, angles, ...) as well as metrics to relate pairs of trajectories (dissimilarity and convergence). Functions are also provided to estimate the ecological quality of ecosystem with respect to reference conditions [Sturbois et al. (2023) <doi:10.1002/ecs2.4726>].
Interconverts between ordered lists and compact string notation. Useful for capturing code lists, and pair-wise codes and decodes, for text storage. Analogous to factor levels and labels. Generics encode() and decode() perform interconversion, while codes() and decodes() extract components of an encoding. The function encoded() checks whether something is interpretable as an encoding. If a vector has an encoded guide attribute, as_factor() uses it to coerce to factor.
Pacote para a analise de experimentos havendo duas variaveis explicativas quantitativas e uma variavel dependente quantitativa. Os experimentos podem ser sem repeticoes ou com delineamento estatistico. Sao ajustados 12 modelos de regressao multipla e plotados graficos de superficie resposta (Hair JF, 2016) <ISBN:13:978-0138132637>.(Package for the analysis of experiments having two explanatory quantitative variables and one quantitative dependent variable. The experiments can be without repetitions or with a statistical design. Twelve multiple regression models are fitted and response surface graphs are plotted (Hair JF, 2016) <ISBN:13:978-0138132637>).
Predictors can be converted to one or more numeric representations using a variety of methods. Effect encodings using simple generalized linear models <doi:10.48550/arXiv.1611.09477> or nonlinear models <doi:10.48550/arXiv.1604.06737> can be used. There are also functions for dimension reduction and other approaches.
This package provides the analysis of variance table including the expected mean squares (EMS) for various types of experimental design. When some variables are random effects or we use special experimental design such as nested design, repeated-measures design, or split-plot design, it is not easy to find the appropriate test, especially denominator for F-statistic which depends on EMS.
An implementation for using efficient initials to compute the maximal eigenpair in R. It provides three algorithms to find the efficient initials under two cases: the tridiagonal matrix case and the general matrix case. Besides, it also provides two algorithms for the next to the maximal eigenpair under these two cases.
Reads European Data Format files EDF and EDF+, see <http://www.edfplus.info>, BioSemi Data Format files BDF, see <http://www.biosemi.com/faq/file_format.htm>, and BDF+ files, see <http://www.teuniz.net/edfbrowser/bdfplus%20format%20description.html>. The files are read in two steps: first the header is read and then the signals (using the header object as a parameter).
This package provides a tool to draw samples from a Empirical Likelihood Bayesian posterior of parameters using Hamiltonian Monte Carlo.
The goal of equatiomatic is to reduce the pain associated with writing LaTeX formulas from fitted models. The primary function of the package, extract_eq(), takes a fitted model object as its input and returns the corresponding LaTeX code for the model.
This package contains data about emojis with relevant metadata, and functions to work with emojis when they are in strings.
This package provides functions for analysis of rate changes in sequential events.
With the functions in this package you can check the validity of the following financial instrument identifiers: FIGI (Financial Instrument Global Identifier <https://www.openfigi.com/about/figi>), CUSIP (Committee on Uniform Security Identification Procedures <https://www.cusip.com/identifiers.html#/CUSIP>), ISIN (International Securities Identification Number <https://www.cusip.com/identifiers.html#/ISIN>), SEDOL (Stock Exchange Daily Official List <https://www2.lseg.com/SEDOL-masterfile-service-tech-guide-v8.6>). You can also calculate the FIGI checksum of 11-character strings, which can be useful if you want to create your own FIGI identifiers.
Aim: Supports the most frequently used methods to combine forecasts. Among others: Simple average, Ordinary Least Squares, Least Absolute Deviation, Constrained Least Squares, Variance-based, Best Individual model, Complete subset regressions and Information-theoretic (information criteria based).
This package provides a series of utility functions to help with reshaping hierarchy of data tree, and reform the structure of data tree.
This package provides functions for sequencing studies allowing for multiple functional annotation scores. Score type tests and an efficient perturbation method are used for individual gene/large gene-set/genome wide analysis. Only summary statistics are needed.
Convenient functions for ensemble forecasts in R combining approaches from the forecast package. Forecasts generated from auto.arima(), ets(), thetaf(), nnetar(), stlm(), tbats(), snaive() and arfima() can be combined with equal weights, weights based on in-sample errors (introduced by Bates & Granger (1969) <doi:10.1057/jors.1969.103>), or cross-validated weights. Cross validation for time series data with user-supplied models and forecasting functions is also supported to evaluate model accuracy.
Data from various catalogs of astrophysical gamma-ray sources detected by NASA's Large Area Telescope (The Astrophysical Journal, 697, 1071, 2009 June 1), on board the Fermi gamma-ray satellite. More information on Fermi and its data products is available from the Fermi Science Support Center (http://fermi.gsfc.nasa.gov/ssc/).
Efficiently implementing two complementary methodologies for discovering motifs in functional data: ProbKMA and FunBIalign. Cremona and Chiaromonte (2023) "Probabilistic K-means with Local Alignment for Clustering and Motif Discovery in Functional Data" <doi:10.1080/10618600.2022.2156522> is a probabilistic K-means algorithm that leverages local alignment and fuzzy clustering to identify recurring patterns (candidate functional motifs) across and within curves, allowing different portions of the same curve to belong to different clusters. It includes a family of distances and a normalization to discover various motif types and learns motif lengths in a data-driven manner. It can also be used for local clustering of misaligned data. Di Iorio, Cremona, and Chiaromonte (2023) "funBIalign: A Hierarchical Algorithm for Functional Motif Discovery Based on Mean Squared Residue Scores" <doi:10.48550/arXiv.2306.04254> applies hierarchical agglomerative clustering with a functional generalization of the Mean Squared Residue Score to identify motifs of a specified length in curves. This deterministic method includes a small set of user-tunable parameters. Both algorithms are suitable for single curves or sets of curves. The package also includes a flexible function to simulate functional data with embedded motifs, allowing users to generate benchmark datasets for validating and comparing motif discovery methods.
Utilities to read and write files in the FITS (Flexible Image Transport System) format, a standard format in astronomy (see e.g. <https://en.wikipedia.org/wiki/FITS> for more information). Present low-level routines allow: reading, parsing, and modifying FITS headers; reading FITS images (multi-dimensional arrays); reading FITS binary and ASCII tables; and writing FITS images (multi-dimensional arrays). Higher-level functions allow: reading files composed of one or more headers and a single (perhaps multidimensional) image or single table; reading tables into data frames; generating vectors for image array axes; scaling and writing images as 16-bit integers. Known incompletenesses are reading random group extensions, as well as complex and array descriptor data types in binary tables.
An implementation of sparsity-ranked lasso and related methods for time series data. This methodology is especially useful for large time series with exogenous features and/or complex seasonality. Originally described in Peterson and Cavanaugh (2022) <doi:10.1007/s10182-021-00431-7> in the context of variable selection with interactions and/or polynomials, ranked sparsity is a philosophy with methods useful for variable selection in the presence of prior informational asymmetry. This situation exists for time series data with complex seasonality, as shown in Peterson and Cavanaugh (2024) <doi:10.1177/1471082X231225307>, which also describes this package in greater detail. The sparsity-ranked penalization methods for time series implemented in fastTS can fit large/complex/high-frequency time series quickly, even with a high-dimensional exogenous feature set. The method is considerably faster than its competitors, while often producing more accurate predictions. Also included is a long hourly series of arrivals into the University of Iowa Emergency Department with concurrent local temperature.