Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Create an interactive function map by analyzing a specified R script. It uses the find_dependencies() function from the functiondepends package to recursively trace all user-defined function dependencies.
Robust analysis using forward search in linear and generalized linear regression models, as described in Atkinson, A.C. and Riani, M. (2000), Robust Diagnostic Regression Analysis, First Edition. New York: Springer.
Input has to be in the form of vectors of lower class limits and upper class limits and frequencies; the output will give a cumulative frequency distribution table with cumulative frequency plot.
Efficient implementations of the algorithms in the Almost-Matching-Exactly framework for interpretable matching in causal inference. These algorithms match units via a learned, weighted Hamming distance that determines which covariates are more important to match on. For more information and examples, see the Almost-Matching-Exactly website.
Forest Many-Objective Robust Decision Making ('FoRDM') is a R toolkit for supporting robust forest management under deep uncertainty. It provides a forestry-focused application of Many-Objective Robust Decision Making ('MORDM') to forest simulation outputs, enabling users to evaluate robustness using regret- and satisficing'-based measures. FoRDM identifies robust solutions, generates Pareto fronts, and offers interactive 2D, 3D, and parallel-coordinate visualizations.
This package implements the h-likelihood estimation procedures for general frailty models including competing-risk models and joint models.
An implementation of various learning algorithms based on fuzzy rule-based systems (FRBSs) for dealing with classification and regression tasks. Moreover, it allows to construct an FRBS model defined by human experts. FRBSs are based on the concept of fuzzy sets, proposed by Zadeh in 1965, which aims at representing the reasoning of human experts in a set of IF-THEN rules, to handle real-life problems in, e.g., control, prediction and inference, data mining, bioinformatics data processing, and robotics. FRBSs are also known as fuzzy inference systems and fuzzy models. During the modeling of an FRBS, there are two important steps that need to be conducted: structure identification and parameter estimation. Nowadays, there exists a wide variety of algorithms to generate fuzzy IF-THEN rules automatically from numerical data, covering both steps. Approaches that have been used in the past are, e.g., heuristic procedures, neuro-fuzzy techniques, clustering methods, genetic algorithms, squares methods, etc. Furthermore, in this version we provide a universal framework named frbsPMML', which is adopted from the Predictive Model Markup Language (PMML), for representing FRBS models. PMML is an XML-based language to provide a standard for describing models produced by data mining and machine learning algorithms. Therefore, we are allowed to export and import an FRBS model to/from frbsPMML'. Finally, this package aims to implement the most widely used standard procedures, thus offering a standard package for FRBS modeling to the R community.
Supports teaching methods of estimating and testing time series factor models for use in robust portfolio construction and analysis. Unique in providing not only classical least squares, but also modern robust model fitting methods which are not much influenced by outliers. Includes returns and risk decompositions, with user choice of standard deviation, value-at-risk, and expected shortfall risk measures. "Robust Statistics Theory and Methods (with R)", R. A. Maronna, R. D. Martin, V. J. Yohai, M. Salibian-Barrera (2019) <doi:10.1002/9781119214656>.
Tests for Kaiser-Meyer-Olkin (KMO) and communalities in a dataset. It provides a final sample by removing variables in a iterable manner while keeping account of the variables that were removed in each step. It follows the best practices and assumptions according to Hair, Black, Babin & Anderson (2018, ISBN:9781473756540).
The main goal of this package is drawing the membership function of the fuzzy p-value which is defined as a fuzzy set on the unit interval for three following problems: (1) testing crisp hypotheses based on fuzzy data, (2) testing fuzzy hypotheses based on crisp data, and (3) testing fuzzy hypotheses based on fuzzy data. In all cases, the fuzziness of data or/and the fuzziness of the boundary of null fuzzy hypothesis transported via the p-value function and causes to produce the fuzzy p-value. If the p-value is fuzzy, it is more appropriate to consider a fuzzy significance level for the problem. Therefore, the comparison of the fuzzy p-value and the fuzzy significance level is evaluated by a fuzzy ranking method in this package.
When fitting a set of linear regressions which have some same variables, we can separate the matrix and reduce the computation cost. This package aims to fit a set of repeated linear regressions faster. More details can be found in this blog Lijun Wang (2017) <https://stats.hohoweiya.xyz/regression/2017/09/26/An-R-Package-Fit-Repeated-Linear-Regressions/>.
Perform mathematical operations on R formula (add, subtract, multiply, etc.) and substitute parts of formula.
Has two functions to help with calculating feature selection stability. Lump is a function that groups subset vectors into a dataframe, and adds NA to shorter vectors so they all have the same length. ASM is a function that takes a dataframe of subset vectors and the original vector of features as inputs, and calculates the Stability of the feature selection. The calculation for asm uses the Adjusted Stability Measure proposed in: Lustgarten', Gopalakrishnan', & Visweswaran (2009)<https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2815476/>.
Fast censored linear regression for the accelerated failure time (AFT) model of Huang (2013) <doi:10.1111/sjos.12031>.
This package implements the algorithm by Briefs and Bläser (2025) <https://openreview.net/forum?id=8PHOPPH35D>, based on the approach of Gupta and Bläser (2024) <doi:10.1609/aaai.v38i18.30023>. It determines, for a structural causal model (SCM) whose directed edges form a tree, whether each parameter is unidentifiable, 1-identifiable or 2-identifiable (other cases cannot occur), using a randomized algorithm with provable running time O(n^3 log^2 n).
Data and functions for the book "Multivariate Statistical Modelling Based on Generalized Linear Models", first edition, by Ludwig Fahrmeir and Gerhard Tutz. Useful when using the book.
Heterogeneity pursuit methodologies for regularized finite mixture regression by effects-model formulation proposed by Li et al. (2021) <arXiv:2003.04787>.
This package provides a replacement for dplyr::na_if(). Allows you to specify multiple values to be replaced with NA using a single function.
Enhances the functionality of the mvbutils::foodweb() program. The matrix-format output of the original program contains identical row names and column names, each name representing a retrieved function. This format is enhanced by using the find_funs() program [see Sebastian (2017) <https://sebastiansauer.github.io/finds_funs/>] to concatenate the package name to the function name. Each package is assigned a unique color, that is used to color code the text naming the packages and the functions. This color coding is extended to the entries of value "1" within the matrix, indicating the pattern of ancestor and descendent functions.
Open-source package for computing likelihood ratios in kinship testing and human identification cases. It has the core function of the software GENis, developed by Fundación Sadosky. It relies on a Bayesian Networks framework and is particularly well suited to efficiently perform large-size queries against databases of missing individuals.
Regular and non-regular Fractional Factorial 2-level designs can be created. Furthermore, analysis tools for Fractional Factorial designs with 2-level factors are offered (main effects and interaction plots for all factors simultaneously, cube plot for looking at the simultaneous effects of three factors, full or half normal plot, alias structure in a more readable format than with the built-in function alias).
Download Data from the FAOSTAT Database of the Food and Agricultural Organization (FAO) of the United Nations. A list of functions to download statistics from FAOSTAT (database of the FAO <https://www.fao.org/faostat/>) and WDI (database of the World Bank <https://data.worldbank.org/>), and to perform some harmonization operations.
Calculates the fused extended two-way fixed effects (FETWFE) estimator for unbiased and efficient estimation of difference-in-differences in panel data with staggered treatment adoption. This estimator eliminates bias inherent in conventional two-way fixed effects estimators, while also employing a novel bridge regression regularization approach to improve efficiency and yield valid standard errors. Also implements extended TWFE (etwfe) and bridge-penalized ETWFE (betwfe). Provides S3 classes for streamlined workflow and supports flexible tuning (ridge and rank-condition guarantees), automatic covariate centering/scaling, and detailed overall and cohort-specific effect estimates with valid standard errors. Includes simulation and formatting utilities, extensive diagnostic tools, vignettes, and examples. See Faletto (2025) (<doi:10.48550/arXiv.2312.05985>).
An easy framework to read FDA Adverse Event Reporting System XML/ASCII files <https://www.fda.gov/drugs/questions-and-answers-fdas-adverse-event-reporting-system-faers/fda-adverse-event-reporting-system-faers-latest-quarterly-data-files>.