Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package contains financial math functions and introductory derivative functions included in the Society of Actuaries and Casualty Actuarial Society Financial Mathematics exam, and some topics in the Models for Financial Economics exam.
Small set of functions designed to speed up the computation of certain matrix operations that are commonly used in statistics and econometrics. It provides efficient implementations for the computation of several structured matrices, matrix decompositions and statistical procedures, many of which have minimal memory overhead. Furthermore, the package provides interfaces to C code callable by another C code from other R packages.
Similar to base's unique function, only optimized for working with data frames, especially those that contain date-time columns.
Easily create graphs of the inter-relationships between functions in an environment.
Create descriptive file names with ease. New file names are automatically (but optionally) time stamped and placed in date stamped directories. Streamline your analysis pipeline with input and output file names that have informative tags and proper file extensions.
This package provides a toolkit for calculating forest and canopy structural complexity metrics from terrestrial LiDAR (light detection and ranging). References: Atkins et al. 2018 <doi:10.1111/2041-210X.13061>; Hardiman et al. 2013 <doi:10.3390/f4030537>; Parker et al. 2004 <doi:10.1111/j.0021-8901.2004.00925.x>.
R shiny app to perform data analysis and visualization for the Fully Automated Senescence Test (FAST) workflow.
This package provides three methods to generate fully-sequential space-filling designs inside a unit hypercube. A fully-sequential space-filling design means a sequence of nested designs (as the design size varies from one point up to some maximum number of points) with the design points added one at a time and such that the design at each size has good space-filling properties. Two methods target the minimum pairwise distance criterion and generate maximin designs, among which one method is more efficient when design size is large. One method targets the maximum hole size criterion and uses a heuristic to generate what is closer to a minimax design.
Upload, download, and edit internet maps with the Felt API (<https://developers.felt.com/rest-api/getting-started>). Allows users to create new maps, edit existing maps, and extract data. Provides tools for working with layers, which represent geographic data, and elements, which are interactive annotations. Spatial data accessed from the API is transformed to work with sf'.
Automatically suggests a correction when a typo occurs.
Converts vectors of numbers into character vectors of numerals, including cardinals (one, two, three) and ordinals (first, second, third). Supports negative numbers, fractions, and arbitrary-precision integer and high-precision floating-point vectors provided by the bignum package.
Catalogues of resolution IV regular fractional factorial designs in 128 runs are provided for up to 33 2-level factors. The catalogues are complete, excluding resolution IV designs without 5-letter words, because these do not add value for a search for unblocked clear designs. The previous package version 1.0 with complete catalogues up to 24 runs (24 runs and a namespace added later) can be downloaded from the authors website.
This package contains a set of functions that can be used to apply formats to data frames or vectors. The package aims to provide functionality similar to that of SAS® formats. Formats are assigned to the format attribute on data frame columns. Then when the fdata() function is called, a new data frame is created with the column data formatted as specified. The package also contains a value() function to create a user-defined format, similar to a SAS® user-defined format.
This package provides tools to estimate the genome size of polyploid species using k-mer frequencies. This package includes functions to process k-mer frequency data and perform genome size estimation by fitting k-mer frequencies with a normal distribution model. It supports handling of complex polyploid genomes and offers various options for customizing the estimation process. The basic method findGSE is detailed in Sun, Hequan, et al. (2018) <doi:10.1093/bioinformatics/btx637>.
This package provides support for building Feldman-Cousins confidence intervals [G. J. Feldman and R. D. Cousins (1998) <doi:10.1103/PhysRevD.57.3873>].
An implementation of a clustering algorithm for functional data based on adaptive density peak detection technique, in which the density is estimated by functional k-nearest neighbor density estimation based on a proposed semi-metric between functions. The proposed functional data clustering algorithm is computationally fast since it does not need iterative process. (Alex Rodriguez and Alessandro Laio (2014) <doi:10.1126/science.1242072>; Xiao-Feng Wang and Yifan Xu (2016) <doi:10.1177/0962280215609948>).
The four-gamete test is based on the infinite-sites model which assumes that the probability of the same mutation occurring twice (recurrent or parallel mutations) and the probability of a mutation back to the original state (reverse mutations) are close to zero. Without these types of mutations, the only explanation for observing the four dilocus genotypes (example below) is recombination (Hudson and Kaplan 1985, Genetics 111:147-164). Thus, the presence of all four gametes is also called phylogenetic incompatibility.
Unified regularized estimating equation solver. Currently the package includes one solver with the l1 penalty only. More solvers and penalties are under development. Reference: Yi Yang, Yuwen Gu, Yue Zhao, Jun Fan (2021) <doi:10.48550/arXiv.2110.11074>.
This package contains a set of utilities for building and testing statistical models (linear, logistic,ordinal or COX) for Computer Aided Diagnosis/Prognosis applications. Utilities include data adjustment, univariate analysis, model building, model-validation, longitudinal analysis, reporting and visualization.
Run three dimensional functional principal component analysis and return the three dimensional functional principal component scores. The details of the method are explained in Lin et al.(2015) <doi:10.1371/journal.pone.0132945>.
Lightweight utilities to estimate autoregressive (AR) and autoregressive moving average (ARMA) noise models from residuals and apply matched generalized least squares to whiten functional magnetic resonance imaging (fMRI) design and data matrices. The ARMA estimator follows a classic 1982 approach <doi:10.1093/biomet/69.1.81>, and a restricted AR family mirrors workflows described by Cox (2012) <doi:10.1016/j.neuroimage.2011.08.056>.
Quantify variability (such as confidence interval) of fertilizer response curves and optimum fertilizer rates using bootstrapping residuals with several popular non-linear and linear models.
Authenticate users in Shiny applications using Google Firebase with any of the many methods provided; email and password, email link, or using a third-party provider such as Github', Twitter', or Google'. Use Firebase Storage to store files securely, and leverage Firebase Analytics to easily log events and better understand your audience.
Multi-environment genomic prediction for training and test environments using penalized factorial regression. Predictions are made using genotype-specific environmental sensitivities as in Millet et al. (2019) <doi:10.1038/s41588-019-0414-y>.