Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides a flexible interface to the Financial Modeling Prep API <https://site.financialmodelingprep.com/developer/docs>. The package supports all available endpoints and parameters, enabling R users to interact with a wide range of financial data.
The classical (i.e. Efron's, see Efron and Tibshirani (1994, ISBN:978-0412042317) "An Introduction to the Bootstrap") bootstrap is widely used for both the real (i.e. "crisp") and fuzzy data. The main aim of the algorithms implemented in this package is to overcome a problem with repetition of a few distinct values and to create fuzzy numbers, which are "similar" (but not the same) to values from the initial sample. To do this, different characteristics of triangular/trapezoidal numbers are kept (like the value, the ambiguity, etc., see Grzegorzewski et al. <doi:10.2991/eusflat-19.2019.68>, Grzegorzewski et al. (2020) <doi:10.2991/ijcis.d.201012.003>, Grzegorzewski et al. (2020) <doi:10.34768/amcs-2020-0022>, Grzegorzewski and Romaniuk (2022) <doi:10.1007/978-3-030-95929-6_3>, Romaniuk and Hryniewicz (2019) <doi:10.1007/s00500-018-3251-5>). Some additional procedures related to these resampling methods are also provided, like calculation of the Bertoluzza et al.'s distance (aka the mid/spread distance, see Bertoluzza et al. (1995) "On a new class of distances between fuzzy numbers") and estimation of the p-value of the one- and two- sample bootstrapped test for the mean (see Lubiano et al. (2016, <doi:10.1016/j.ejor.2015.11.016>)). Additionally, there are procedures which randomly generate trapezoidal fuzzy numbers using some well-known statistical distributions.
Compute energy fluxes in trophic networks, from resources to their consumers, and can be applied to systems ranging from simple two-species interactions to highly complex food webs. It implements the approach described in Gauzens et al. (2017) <doi:10.1101/229450> to calculate energy fluxes, which are also used to calculate equilibrium stability.
Recent years have seen significant interest in neighborhood-based structural parameters that effectively represent the spatial characteristics of tree populations and forest communities, and possess strong applicability for guiding forestry practices. This package provides valuable information that enhances our understanding and analysis of the fine-scale spatial structure of tree populations and forest stands. Reference: Yan L, Tan W, Chai Z, et al (2019) <doi:10.13323/j.cnki.j.fafu(nat.sci.).2019.03.007>.
This package provides a handy tool to calculate carbon footprints from air travel based on three-letter International Air Transport Association (IATA) airport codes or latitude and longitude. footprint first calculates the great-circle distance between departure and arrival destinations. It then uses the Department of Environment, Food & Rural Affairs (DEFRA) greenhouse gas conversion factors for business air travel to estimate the carbon footprint. These conversion factors consider trip length, flight class (e.g. economy, business), and emissions metric (e.g. carbon dioxide equivalent, methane).
It calculates the alpha-quantile proposed by Daouia and Simar (2007) <doi:10.1016/j.jeconom.2006.07.002> and order-m efficiency score in multi-dimension proposed by Daouia and Gijbels (2011) <doi:10.1016/j.jeconom.2010.12.002> and computes several summaries and representation of the associated frontiers in 2d and 3d.
Annotates Finnish textual survey responses into CoNLL-U format using Finnish treebanks from <https://universaldependencies.org/format.html> using UDPipe as described in Straka and Straková (2017) <doi:10.18653/v1/K17-3009>. Formatted data is then analysed using single or comparison n-gram plots, wordclouds, summary tables and Concept Network plots. The Concept Network plots use the TextRank algorithm as outlined in Mihalcea, Rada & Tarau, Paul (2004) <https://aclanthology.org/W04-3252/>.
This package implements a fast, flexible method for simulating continuous variables with specified rank correlations using the Imanâ Conover transformation (Iman & Conover, 1982 <doi:10.1080/03610918208812265>) and back-ranking. Includes plotting tools and error-diagnostics.
This package provides a Bayesian Nonparametric model for the study of time-evolving frequencies, which has become renowned in the study of population genetics. The model consists of a Hidden Markov Model (HMM) in which the latent signal is a distribution-valued stochastic process that takes the form of a finite mixture of Dirichlet Processes, indexed by vectors that count how many times each value is observed in the population. The package implements methodologies presented in Ascolani, Lijoi and Ruggiero (2021) <doi:10.1214/20-BA1206> and Ascolani, Lijoi and Ruggiero (2023) <doi:10.3150/22-BEJ1504> that make it possible to study the process at the time of data collection or to predict its evolution in future or in the past.
This package provides functions for selecting attributes from a given dataset. Attribute subset selection is the process of identifying and removing as much of the irrelevant and redundant information as possible.
This package implements methods for multiple change point detection in multivariate time series with non-stationary dynamics and cross-correlations. The methodology is based on a model in which each component has a fluctuating mean represented by a random walk with occasional abrupt shifts, combined with a stationary vector autoregressive structure to capture temporal and cross-sectional dependence. The framework is broadly applicable to correlated multivariate sequences in which large, sudden shifts occur in all or subsets of components and are the primary targets of interest, whereas small, smooth fluctuations are not. Although random walks are used as a modeling device, they provide a flexible approximation for a wide class of slowly varying or locally smooth dynamics, enabling robust performance beyond the strict random walk setting.
Generates predictive distributions based on calibrating priors for various commonly used statistical models, including models with predictors. Routines for densities, probabilities, quantiles, random deviates and the parameter posterior are provided. The predictions are generated from the Bayesian prediction integral, with priors chosen to give good reliability (also known as calibration). For homogeneous models, the prior is set to the right Haar prior, giving predictions which are exactly reliable. As a result, in repeated testing, the frequencies of out-of-sample outcomes and the probabilities from the predictions agree. For other models, the prior is chosen to give good reliability. Where possible, the Bayesian prediction integral is solved exactly. Where exact solutions are not possible, the Bayesian prediction integral is solved using the Datta-Mukerjee-Ghosh-Sweeting (DMGS) asymptotic expansion. Optionally, the prediction integral can also be solved using posterior samples generated using Paul Northrop's ratio of uniforms sampling package ('rust'). Results are also generated based on maximum likelihood, for comparison purposes. Various model selection diagnostics and testing routines are included. Based on "Reducing reliability bias in assessments of extreme weather risk using calibrating priors", Jewson, S., Sweeting, T. and Jewson, L. (2024); <doi:10.5194/ascmo-11-1-2025>.
This package provides a simple way to unload none-base packages and remove all global variables.
The fxl Charting package is used to prepare and design single case design figures that are typically prepared in spreadsheet software. With fxl', there is no need to leave the R environment to prepare these works and many of the more unique conventions in single case experimental designs can be performed without the need for physically constructing features of plots (e.g., drawing annotations across plots). Support is provided for various different plotting arrangements (e.g., multiple baseline), annotations (e.g., brackets, arrows), and output formats (e.g., svg, rasters).
This package provides functions that calculates common types of splitting criteria used in random forests for classification problems, as well as functions that make predictions based on a single tree or a Forest-R.K. model; the package also provides functions to generate importance plot for a Forest-R.K. model, as well as the 2D multidimensional-scaling plot of data points that are colour coded by their predicted class types by the Forest-R.K. model. This package is based on: Bernard, S., Heutte, L., Adam, S., (2008, ISBN:978-3-540-85983-3) "Forest-R.K.: A New Random Forest Induction Method", Fourth International Conference on Intelligent Computing, September 2008, Shanghai, China, pp.430-437.
An easy way to conduct flexible scan. Monte-Carlo method is used to test the spatial clusters given the cases, population, and shapefile. A table with formal style and a map with clusters are included in the result report. The method can be referenced at: Toshiro Tango and Kunihiko Takahashi (2005) <doi:10.1186/1476-072X-4-11>.
Constructs and visualises trade-off functions for f-differential privacy (f-DP) as introduced by Dong et al. (2022) <doi:10.1111/rssb.12454>. Supports Gaussian differential privacy, the f-DP generalisation of (epsilon, delta)-differential privacy, and accepts user-specified optimal type I / type II errors from which the lower convex hull trade-off function is automatically constructed.
Filling in the missing entries of a partially observed data is one of fundamental problems in various disciplines of mathematical science. For many cases, data at our interests have canonical form of matrix in that the problem is posed upon a matrix with missing values to fill in the entries under preset assumptions and models. We provide a collection of methods from multiple disciplines under Matrix Completion, Imputation, and Inpainting. See Davenport and Romberg (2016) <doi:10.1109/JSTSP.2016.2539100> for an overview of the topic.
This package provides a data package that hosts all models for the nflfastR package.
Flipbooks present code step-by-step and side-by-side with its output. flipbookr helps creators build flipbooks efficiently because code pipelines are automatically parsed and prepped for presentation as flipbooks.
This package implements various methods for estimating fractal dimension of time series and 2-dimensional data <doi:10.1214/11-STS370>.
This package provides a plugin for fiery that supports various forms of authorization and authentication schemes. Schemes can be required in various combinations or by themselves and can be combined with scopes to provide fine-grained access control to the server.
This package provides a lightweight package to compute Maximal Overlap Discrete Wavelet Transform (MODWT) and à Trous Discrete Wavelet Transform by leveraging the power of Rcpp to make these operations fast. This package was designed for use in forecasting, and allows users avoid the inclusion of future data when performing wavelet decomposition of time series. See Quilty and Adamowski (2018) <doi:10.1016/j.jhydrol.2018.05.003>.
This contains functions that can be used to estimate a smoothed and a non-smoothed (empirical) time-dependent receiver operating characteristic curve and the corresponding area under the receiver operating characteristic curve for correlated right-censored time-to-event data. See Beyene and Chen (2024) <doi:10.1177/09622802231220496>.