Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides functions for the calculation of greenhouse gas flux rates from closed chamber concentration measurements. The package follows a modular concept: Fluxes can be calculated in just two simple steps or in several steps if more control in details is wanted. Additionally plot and preparation functions as well as functions for modelling gpp and reco are provided.
This package provides robust tests for testing in GLMs, by sign-flipping score contributions. The tests are robust against overdispersion, heteroscedasticity and, in some cases, ignored nuisance variables. See Hemerik, Goeman and Finos (2020) <doi:10.1111/rssb.12369>.
This package provides core computational operations in C++ via RcppArmadillo', enabling faster performance than pure R, improved numerical stability, and parallel execution with OpenMP where available. On systems without OpenMP support, the package automatically falls back to single-threaded execution with no user configuration required. For efficient model selection, it integrates with CVST to provide sequential-testing cross-validation that identifies competitive hyperparameters without exhaustive grid search. The package offers a unified interface for exact kernel ridge regression and three scalable approximationsâ Nyström, Pivoted Cholesky, and Random Fourier Featuresâ allowing analyses with substantially larger sample sizes than are feasible with exact KRR. It also integrates with the tidymodels ecosystem via the parsnip model specification krr_reg', and the S3 method tunable.krr_reg(). To understand the theoretical background, one can refer to Wainwright (2019) <doi:10.1017/9781108627771>.
Estimate Barton & Lord's (1981) <doi:10.1002/j.2333-8504.1981.tb01255.x> four parameter IRT model with lower and upper asymptotes using Bayesian formulation described by Culpepper (2016) <doi:10.1007/s11336-015-9477-6>.
Calculate useful quantities for a user-defined differential equation model of infectious disease transmission among individuals in a healthcare facility. Input rates of transition between states of individuals with and without the disease-causing organism, distributions of states at facility admission, relative infectivity of transmissible states, and the facility length of stay distribution. Calculate the model equilibrium and the basic facility reproduction number, as described in Toth et al. (2025) <doi:10.1371/journal.pcbi.1013577>.
Original idea was presented in the reference paper. Varghese et al. (2020, 74(1):35-42) "Bayesian State-space Implementation of Schaefer Production Model for Assessment of Stock Status for Multi-gear Fishery". Marine fisheries governance and management practices are very essential to ensure the sustainability of the marine resources. A widely accepted resource management strategy towards this is to derive sustainable fish harvest levels based on the status of marine fish stock. Various fish stock assessment models that describe the biomass dynamics using time series data on fish catch and fishing effort are generally used for this purpose. In the scenario of complex multi-species marine fishery in which different species are caught by a number of fishing gears and each gear harvests a number of species make it difficult to obtain the fishing effort corresponding to each fish species. Since the capacity of the gears varies, the effort made to catch a resource cannot be considered as the sum of efforts expended by different fishing gears. This necessitates standardisation of fishing effort in unit base.
Probability distributions that are sometimes useful in hydrology.
Computes and plots prediction intervals for numerical data or prediction sets for categorical data using prior information. Empirical Bayes procedures to estimate the prior information from multi-group data are included. See, e.g.,Bersson and Hoff (2022) <arXiv:2204.08122> "Optimal Conformal Prediction for Small Areas".
This package provides a dynamic programming algorithm for the fast segmentation of univariate signals into piecewise constant profiles. The fpop package is a wrapper to a C++ implementation of the fpop (Functional Pruning Optimal Partioning) algorithm described in Maidstone et al. 2017 <doi:10.1007/s11222-016-9636-3>. The problem of detecting changepoints in an univariate sequence is formulated in terms of minimising the mean squared error over segmentations. The fpop algorithm exactly minimizes the mean squared error for a penalty linear in the number of changepoints.
An easy-to-use web client/wrapper for the Figma API <https://www.figma.com/developers/api>. It allows you to bring all data from a Figma file to your R session. This includes the data of all objects that you have drawn in this file, and their respective canvas/page metadata.
This package provides an interface to the Flickr API <https://www.flickr.com/services/api/> and allows R users to download data on Flickr.
Fits a functional mediation model with a scalar distal outcome. The method is described in detail by Coffman, Dziak, Litson, Chakraborti, Piper & Li (2021) <arXiv:2112.03960>. The model is similar to that of Lindquist (2012) <doi:10.1080/01621459.2012.695640> although allowing a binary outcome as an alternative to a numerical outcome. The current version is a minor bug fix in the vignette. The development of this package was part of a research project supported by National Institutes of Health grants P50 DA039838 from the National Institute of Drug Abuse and 1R01 CA229542-01 from the National Cancer Institute and the NIH Office of Behavioral and Social Science Research. Content is solely the responsibility of the authors and does not necessarily represent the official views of the funding institutions mentioned above. This software is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
Fair machine learning regression models which take sensitive attributes into account in model estimation. Currently implementing Komiyama et al. (2018) <http://proceedings.mlr.press/v80/komiyama18a/komiyama18a.pdf>, Zafar et al. (2019) <https://www.jmlr.org/papers/volume20/18-262/18-262.pdf> and my own approach from Scutari, Panero and Proissl (2022) <doi:10.1007/s11222-022-10143-w> that uses ridge regression to enforce fairness.
This package provides a high-performance framework for deriving bioclimatic and custom summary variables from large-scale climate raster data. The package features a dual-backend architecture that intelligently switches between fast in-memory processing for smaller datasets (via the terra package) and a memory-safe tiled approach for massive datasets that do not fit in RAM (via exactextractr and Rfast'). The main functions, derive_bioclim() and derive_statistics(), offer a unified interface with advanced options for custom time periods and static indices, making it suitable for a wide range of ecological and environmental modeling applications. A software note is in preparation. In the meantime, you can visit the package website <https://gepinillab.github.io/fastbioclim/> to find tutorials in English and Spanish.
This package contains functions for operations with fuzzy cognitive maps using t-norm and s-norm operators. T-norms and S-norms are described by Dov M. Gabbay and George Metcalfe (2007) <doi:10.1007/s00153-007-0047-1>. System indicators are described by Cox, Earl D. (1995) <isbn:1886801010>. Executable examples are provided in the "inst/examples" folder.
This is a package for implementation of Flury-Gautschi algorithms.
This package implements parsimonious hidden Markov models for four-way data via expectation- conditional maximization algorithm, as described in Tomarchio et al. (2020) <arXiv:2107.04330>. The matrix-variate normal distribution is used as emission distribution. For each hidden state, parsimony is reached via the eigen-decomposition of the covariance matrices of the emission distribution. This produces a family of 98 parsimonious hidden Markov models.
This package provides functions for printing the contents of a folder as columns in a ragged-bottom data.frame and for viewing the details (size, time created, time modified, etc.) of a folder's top level contents.
Computes Fourier integrals of functions of one and two variables using the Fast Fourier transform. The Fourier transforms must be evaluated on a regular grid for fast evaluation.
This package provides functions to help in fitting models to data, to perform Monte Carlo, sensitivity and identifiability analysis. It is intended to work with models be written as a set of differential equations that are solved either by an integration routine from package deSolve', or a steady-state solver from package rootSolve'. However, the methods can also be used with other types of functions.
Collect your data on digital marketing campaigns from Facebook Organic using the Windsor.ai API <https://windsor.ai/api-fields/>.
This package provides a collection of toys to do things like generate Collatz and other interesting sequences, calculate a fraction which is a close approximation to some value (e.g., 22/7 or 355/113 for pi), and so on.
Implementation of the Factorized Binary Search (FaBiSearch) methodology for the estimation of the number and the location of multiple change points in the network (or clustering) structure of multivariate high-dimensional time series. The method is motivated by the detection of change points in functional connectivity networks for functional magnetic resonance imaging (fMRI) data. FaBiSearch uses non-negative matrix factorization (NMF), an unsupervised dimension reduction technique, and a new binary search algorithm to identify multiple change points. It requires minimal assumptions. Lastly, we provide interactive, 3-dimensional, brain-specific network visualization capability in a flexible, stand-alone function. This function can be conveniently used with any node coordinate atlas, and nodes can be color coded according to community membership, if applicable. The output is an elegantly displayed network laid over a cortical surface, which can be rotated in the 3-dimensional space. The main routines of the package are detect.cps(), for multiple change point detection, est.net(), for estimating a network between stationary multivariate time series, net.3dplot(), for plotting the estimated functional connectivity networks, and opt.rank(), for finding the optimal rank in NMF for a given data set. The functions have been extensively tested on simulated multivariate high-dimensional time series data and fMRI data. For details on the FaBiSearch methodology, please see Ondrus et al. (2021) <arXiv:2103.06347>. For a more detailed explanation and applied examples of the fabisearch package, please see Ondrus and Cribben (2022), preprint.
This package provides the function feis() to estimate fixed effects individual slope (FEIS) models. The FEIS model constitutes a more general version of the often-used fixed effects (FE) panel model, as implemented in the package plm by Croissant and Millo (2008) <doi:10.18637/jss.v027.i02>. In FEIS models, data are not only person demeaned like in conventional FE models, but detrended by the predicted individual slope of each person or group. Estimation is performed by applying least squares lm() to the transformed data. For more details on FEIS models see Bruederl and Ludwig (2015, ISBN:1446252442); Frees (2001) <doi:10.2307/3316008>; Polachek and Kim (1994) <doi:10.1016/0304-4076(94)90075-2>; Ruettenauer and Ludwig (2020) <doi:10.1177/0049124120926211>; Wooldridge (2010, ISBN:0262294354). To test consistency of conventional FE and random effects estimators against heterogeneous slopes, the package also provides the functions feistest() for an artificial regression test and bsfeistest() for a bootstrapped version of the Hausman test.