Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Simplifies the process of importing and managing input-output matrices from Microsoft Excel into R, and provides a suite of functions for analysis. It leverages the R6 class for clean, memory-efficient object-oriented programming. Furthermore, all linear algebra computations are implemented in Rust to achieve highly optimized performance.
It implements many univariate and multivariate permutation (and rotation) tests. Allowed tests: the t one and two samples, ANOVA, linear models, Chi Squared test, rank tests (i.e. Wilcoxon, Mann-Whitney, Kruskal-Wallis), Sign test and Mc Nemar. Test on Linear Models are performed also in presence of covariates (i.e. nuisance parameters). The permutation and the rotation methods to get the null distribution of the test statistics are available. It also implements methods for multiplicity control such as Westfall & Young minP procedure and Closed Testing (Marcus, 1976) and k-FWER. Moreover, it allows to test for fixed effects in mixed effects models.
This package provides a function composition operator to chain a series of calls into a single function, mimicking the math notion of (f o g o h)(x) = h(g(f(x))). Inspired by pipeOp ('|>') since R4.1 and magrittr pipe ('%>%'), the operator build a pipe without putting data through, which is best for anonymous function accepted by utilities such as apply() and lapply().
Wrapper functions that interface with FSL <http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/>, a powerful and commonly-used neuroimaging software, using system commands. The goal is to be able to interface with FSL completely in R, where you pass R objects of class nifti', implemented by package oro.nifti', and the function executes an FSL command and returns an R object of class nifti if desired.
This package implements the Mode Jumping Markov Chain Monte Carlo algorithm described in <doi:10.1016/j.csda.2018.05.020> and its Genetically Modified counterpart described in <doi:10.1613/jair.1.13047> as well as the sub-sampling versions described in <doi:10.1016/j.ijar.2022.08.018> for flexible Bayesian model selection and model averaging.
The aim of the package is to provide some basic functions for doing statistics with trapezoidal fuzzy numbers. In particular, the package contains several functions for simulating trapezoidal fuzzy numbers, as well as for calculating some central tendency measures (mean and two types of median), some scale measures (variance, ADD, MDD, Sn, Qn, Tn and some M-estimators) and one diversity index and one inequality index. Moreover, functions for calculating the 1-norm distance, the mid/spr distance and the (phi,theta)-wabl/ldev/rdev distance between fuzzy numbers are included, and a function to calculate the value phi-wabl given a sample of trapezoidal fuzzy numbers.
Handy functions and data to support the course book Empirical Research in Accounting: Tools and Methods (1st ed.). Chapman and Hall/CRC. <doi:10.1201/9781003456230> and <https://iangow.github.io/far_book/>.
We facilitate the analysis of full factorial mating designs with mixed-effects models. The package contains six vignettes containing detailed examples.
This package provides hardware-accelerated tools for performing rerandomization and randomization testing in experimental research. Using a JAX backend, the package enables exact rerandomization inference even for large experiments with hundreds of billions of possible randomizations. Key functionalities include generating pools of acceptable rerandomizations based on covariate balance, conducting exact randomization tests, and performing pre-analysis evaluations to determine optimal rerandomization acceptance thresholds. The package supports various hardware acceleration frameworks including CPU', CUDA', and METAL', making it versatile across accelerated computing environments. This allows researchers to efficiently implement stringent rerandomization designs and conduct valid inference even with large sample sizes. The package is partly based on Jerzak and Goldstein (2023) <doi:10.48550/arXiv.2310.00861>.
Computes different multidimensional FD indices. Implements a distance-based framework to measure FD that allows any number and type of functional traits, and can also consider species relative abundances. Also contains other useful tools for functional ecology.
This package provides a collection of functions for calculating Floristic Quality Assessment (FQA) metrics using regional FQA databases that have been approved or approved with reservations as ecological planning models by the U.S. Army Corps of Engineers (USACE). For information on FQA see Spyreas (2019) <doi:10.1002/ecs2.2825>. These databases are stored in a sister R package, fqadata'. Both packages were developed for the USACE by the U.S. Army Engineer Research and Development CenterĂ¢ s Environmental Laboratory.
This package implements a path algorithm for the Fused Lasso Signal Approximator. For more details see the help files or the article by Hoefling (2009) <arXiv:0910.0526>.
This package provides four addons for analyzing trends and unit roots in financial time series: (i) functions for the density and probability of the augmented Dickey-Fuller Test, (ii) functions for the density and probability of MacKinnon's unit root test statistics, (iii) reimplementations for the ADF and MacKinnon Test, and (iv) an urca Unit Root Test Interface for Pfaff's unit root test suite.
This package provides a faster implementation of Bayesian Causal Forests (BCF; Hahn et al. (2020) <doi:10.1214/19-BA1195>), which uses regression tree ensembles to estimate the conditional average treatment effect of a binary treatment on a scalar output as a function of many covariates. This implementation avoids many redundant computations and memory allocations present in the original BCF implementation, allowing the model to be fit to larger datasets. The implementation was originally developed for the 2022 American Causal Inference Conference's Data Challenge. See Kokandakar et al. (2023) <doi:10.1353/obs.2023.0024> for more details.
This package implements numerical entropy-pooling for portfolio construction and scenario analysis as described in Meucci, Attilio (2008) and Meucci, Attilio (2010) <doi:10.2139/ssrn.1696802>.
Create datasets with factorial structure through simulation by specifying variable parameters. Extended documentation at <https://scienceverse.github.io/faux/>. Described in DeBruine (2020) <doi:10.5281/zenodo.2669586>.
This package provides functions and datasets from the book "Forest Analytics with R".
Defines a collection of functions to compute average power and sample size for studies that use the false discovery rate as the final measure of statistical significance.
Description: Provides comprehensive tools for analysing and characterizing mixed-level factorial designs arranged in blocks. Includes construction and validation of incidence structures, computation of C-matrices, evaluation of A-, D-, E-, and MV-efficiencies, checking of orthogonal factorial structure (OFS), diagnostics based on Hamming distance, discrepancy measures, B-criterion, Es^2 statistics, J2-distance and J2-efficiency, Phi-p optimality, and symmetry conditions for universal optimality. The methodological framework follows foundational work on factorial and mixed-level design assessment by Xu and Wu (2001) <doi:10.1214/aos/1013699993>, and Gupta (1983) <doi:10.1111/j.2517-6161.1983.tb01253.x>. These methods assist in selecting, comparing, and studying factorial block designs across a range of experimental situations.
This package creates participant flow diagrams directly from a dataframe. Representing the flow of participants through each stage of a study, especially in clinical trials, is essential to assess the generalisability and validity of the results. This package provides a set of functions that can be combined with a pipe operator to create all kinds of flowcharts from a data frame in an easy way.
Build display tables easily by extending the functionality of the flextable package. Features include spanning header, grouping rows, parsing markdown and so on.
Simulation and analysis of Fully-Latent Principal Stratification (FLPS) with measurement models. Lee, Adam, Kang, & Whittaker (2023). <doi:10.1007/978-3-031-27781-8_25>. This package is supported by the Institute of Education Sciences, U.S. Department of Education, through Grant R305D210036.
Automated time series forecasting developed by Microsoft Finance. The Microsoft Finance Time Series Forecasting Framework, aka Finn, can be used to forecast any component of the income statement, balance sheet, or any other area of interest by finance. Any numerical quantity over time, Finn can be used to forecast it. While it can be applied outside of the finance domain, Finn was built to meet the needs of financial analysts to better forecast their businesses within a company, and has a lot of built in features that are specific to the needs of financial forecasters. Happy forecasting!
This package provides a collection of datasets essential for functional genomic analysis. Gene names, gene positions, cytoband information, sourced from Ensembl and phenotypes association graph prepared from GWAScatalog are included. Data is available in both GRCh37 and 38 builds. These datasets facilitate a wide range of genomic studies, including the identification of genetic variants, exploration of genomic features, and post-GWAS functional analysis.