Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Import data of tests and questionnaires from FormScanner. FormScanner is an open source software that converts scanned images to data using optical mark recognition (OMR) and it can be downloaded from <http://sourceforge.net/projects/formscanner/>. The spreadsheet file created by FormScanner is imported in a convenient format to perform the analyses provided by the package. These analyses include the conversion of multiple responses to binary (correct/incorrect) data, the computation of the number of corrected responses for each subject or item, scoring using weights,the computation and the graphical representation of the frequencies of the responses to each item and the report of the responses of a few subjects.
Parses financial condition and performance data (Call Reports) for institutions in the United States Farm Credit System. Contains functions for downloading files from the Farm Credit Administration (FCA) Call Report archive website and reading the files into tidy data frame format. The archive website can be found at <https://www.fca.gov/bank-oversight/call-report-data-for-download>.
Constructs optimal policy trees which provide a rule-based treatment prescription policy. Input is covariate and reward data, where, typically, the rewards will be doubly robust reward estimates. This package aims to construct optimal policy trees more quickly than the existing policytree package and is intended to be used alongside that package. For more details see Cussens, Hatamyar, Shah and Kreif (2025) <doi:10.48550/arXiv.2506.15435>.
Construction, calculation and display of fault trees. Methods derived from Clifton A. Ericson II (2005, ISBN: 9780471739425) <DOI:10.1002/0471739421>, Antoine Rauzy (1993) <DOI:10.1016/0951-8320(93)90060-C>, Tim Bedford and Roger Cooke (2012, ISBN: 9780511813597) <DOI:10.1017/CBO9780511813597>, Nikolaos Limnios, (2007, ISBN: 9780470612484) <DOI: 10.1002/9780470612484>.
This package provides a population genetic simulator, which is able to generate synthetic datasets for single-nucleotide polymorphisms (SNP) for multiple populations. The genetic distances among populations can be set according to the Fixation Index (Fst) as explained in Balding and Nichols (1995) <doi:10.1007/BF01441146>. This tool is able to simulate outlying individuals and missing SNPs can be specified. For Genome-wide association study (GWAS), disease status can be set in desired level according risk ratio.
This package implements shape-based clustering algorithms for multidimensional longitudinal data based on the Fréchet distance. It implements two main methods: MFKmL (Multidimensional Fréchet distance-based K-means for Longitudinal data), an extension of the K-means algorithm using the Fréchet distance originally developed in the kmlShape package, adapted for multidimensional trajectories; and SFKmL (Sparse multidimensional Fréchet distance-based K-medoids for Longitudinal data), a K-medoids-based clustering algorithm that incorporates variable selection. These tools are designed to enhance clustering performance in high-dimensional longitudinal data settings, particularly those with time delays, variations in trajectory speed, irregular sampling intervals, and noise. This package implements methods derived from Kang et al. (2023) <doi:10.1007/s11222-023-10237-z>.
Many statistical models and analyses in R are implemented through formula objects. The formulaic package creates a unified approach for programmatically and dynamically generating formula objects. Users may specify the outcome and inputs of a model directly, search for variables to include based upon naming patterns, incorporate interactions, and identify variables to exclude. A wide range of quality checks are implemented to identify issues such as misspecified variables, duplication, a lack of contrast in the inputs, and a large number of levels in categorical data. Variables that do not meet these quality checks can be automatically excluded from the model. These issues are documented and reported in a manner that provides greater accountability and useful information to guide an investigation of the data.
Fitting (hierarchical) hidden Markov models to financial data via maximum likelihood estimation. See Oelschläger, L. and Adam, T. "Detecting Bearish and Bullish Markets in Financial Time Series Using Hierarchical Hidden Markov Models" (2021, Statistical Modelling) <doi:10.1177/1471082X211034048> for a reference on the method. A user guide is provided by the accompanying software paper "fHMM: Hidden Markov Models for Financial Time Series in R", Oelschläger, L., Adam, T., and Michels, R. (2024, Journal of Statistical Software) <doi:10.18637/jss.v109.i09>.
Download flight and airport data from Brazilâ s Civil Aviation Agency (ANAC) <https://www.gov.br/anac/pt-br>. The data covers detailed information on aircraft, airports, and airport operations registered with ANAC. It also includes data on airfares, all international flights to and from Brazil, and domestic flights within the country.
It calculates the alpha-quantile proposed by Daouia and Simar (2007) <doi:10.1016/j.jeconom.2006.07.002> and order-m efficiency score in multi-dimension proposed by Daouia and Gijbels (2011) <doi:10.1016/j.jeconom.2010.12.002> and computes several summaries and representation of the associated frontiers in 2d and 3d.
This contains functions that can be used to estimate a smoothed and a non-smoothed (empirical) time-dependent receiver operating characteristic curve and the corresponding area under the receiver operating characteristic curve for correlated right-censored time-to-event data. See Beyene and Chen (2024) <doi:10.1177/09622802231220496>.
This package provides a streamlined, standard evaluation-based approach to multivariate function composition. Allows for chaining commands via a forward-pipe operator, %>%.
This package contains functions to fetch data from various data sources. The user first creates a catalog of objects from a data source, then fetches data from the catalog. The package provides an easy way to access data from many different types of sources.
This package provides a collection of functions to fit and explore single, multi-component and restricted Frequency Modulated Moebius (FMM) models. FMM is a nonlinear parametric regression model capable of fitting non-sinusoidal shapes in rhythmic patterns. Details about the mathematical formulation of FMM models can be found in Rueda et al. (2019) <doi:10.1038/s41598-019-54569-1>.
Linear cross-section factor model fitting with least-squares and robust fitting the lmrobdetMM() function from RobStatTM'; related volatility, Value at Risk and Expected Shortfall risk and performance attribution (factor-contributed vs idiosyncratic returns); tabular displays of risk and performance reports; factor model Monte Carlo. The package authors would like to thank Chicago Research on Security Prices,LLC for the cross-section of about 300 CRSP stocks data (in the data.table object stocksCRSP', and S&P GLOBAL MARKET INTELLIGENCE for contributing 14 factor scores (a.k.a "alpha factors".and "factor exposures") fundamental data on the 300 companies in the data.table object factorSPGMI'. The stocksCRSP and factorsSPGMI data are not covered by the GPL-2 license, are not provided as open source of any kind, and they are not to be redistributed in any form.
This package provides functions and example datasets for Fechnerian scaling of discrete object sets. User can compute Fechnerian distances among objects representing subjective dissimilarities, and other related information. See package?fechner for an overview.
Many Fitbit users, and R-friendly Fitbit users especially, have found themselves curious about their Fitbit data. Fitbit aggregates a large amount of personal data, much of which is interesting for personal research and to satisfy curiosity, and is even potentially useful in medical settings. The goal of fitbitr is to make interfacing with the Fitbit API as streamlined as possible, to make it simple for R users of all backgrounds and comfort levels to analyze their Fitbit data and do whatever they want with it! Currently, fitbitr includes methods for pulling data on activity, sleep, and heart rate, but this list is likely to grow in the future as the package gains more traction and more requests for new methods to be implemented come in. You can find details on the Fitbit API at <https://dev.fitbit.com/build/reference/web-api/>.
One can easily draw the membership function of f(x,y) by package FuzzyNumbers.Ext.2 in which f(.,.) is supposed monotone and x and y are two fuzzy numbers. This work is possible using function f2apply() which is an extension of function fapply() from Package FuzzyNumbers for two-variable monotone functions. Moreover, this package has the ability of computing the core, support and alpha-cuts of the fuzzy-valued final result.
Automatically suggests a correction when a typo occurs.
This package provides a collection of acceleration schemes for proximal gradient methods for estimating penalized regression parameters described in Goldstein, Studer, and Baraniuk (2016) <arXiv:1411.3406>. Schemes such as Fast Iterative Shrinkage and Thresholding Algorithm (FISTA) by Beck and Teboulle (2009) <doi:10.1137/080716542> and the adaptive stepsize rule introduced in Wright, Nowak, and Figueiredo (2009) <doi:10.1109/TSP.2009.2016892> are included. You provide the objective function and proximal mappings, and it takes care of the issues like stepsize selection, acceleration, and stopping conditions for you.
An R client for the "fixer.io" currency conversion and exchange rate API. The API requires registration and some features are only available on paid accounts. The full API documentation is available at <https://fixer.io/documentation>.
Assessing forest ecosystem health is an effective way for forest resource management.The national forest health evaluation system at the forest stand level using analytic hierarchy process, has a high application value and practical significance. The package can effectively and easily realize the total assessment process, and help foresters to further assess and management forest resources.
Turn numeric,data.frame,matrix into fraction form.
This package provides a collection of functions for trading and rebalancing financial instruments. It implements various technical indicators to analyse time series such as moving averages or stochastic oscillators.