Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Graphical functionalities for the representation of multivariate data. It is a complete re-implementation of the functions available in the ade4 package.
Aids the programming of Clinical Data Standards Interchange Consortium (CDISC) compliant Ophthalmology Analysis Data Model (ADaM) datasets in R. ADaM datasets are a mandatory part of any New Drug or Biologics License Application submitted to the United States Food and Drug Administration (FDA). Analysis derivations are implemented in accordance with the "Analysis Data Model Implementation Guide" (CDISC Analysis Data Model Team, 2021, <https://www.cdisc.org/standards/foundational/adam/adamig-v1-3-release-package>).
Consider autoregressive model of order p where the distribution function of innovation is unknown, but innovations are independent and symmetrically distributed. The package contains a function named ARMDE which takes X (vector of n observations) and p (order of the model) as input argument and returns minimum distance estimator of the parameters in the model.
This package provides an efficient suite of R tools for scorecard modeling, analysis, and visualization. Including equal frequency binning, equidistant binning, K-means binning, chi-square binning, decision tree binning, data screening, manual parameter modeling, fully automatic generation of scorecards, etc. This package is designed to make scorecard development easier and faster. References include: 1. <http://shichen.name/posts/>. 2. Dong-feng Li(Peking University),Class PPT. 3. <https://zhuanlan.zhihu.com/p/389710022>. 4. <https://www.zhangshengrong.com/p/281oqR9JNw/>.
Simple animated versions of basic R plots, using the animation package. Includes animated versions of plot, barplot, persp, contour, filled.contour, hist, curve, points, lines, text, symbols, segments, and arrows.
For instructions, check <https://github.com/Hzhang-ouce/ARTofR>. This is a wrapper of bannerCommenter', for inserting neat comments, headers and dividers.
Add-on package to the airGR package that simplifies its use and is aimed at being used for teaching hydrology. The package provides 1) three functions that allow to complete very simply a hydrological modelling exercise 2) plotting functions to help students to explore observed data and to interpret the results of calibration and simulation of the GR ('Génie rural') models 3) a Shiny graphical interface that allows for displaying the impact of model parameters on hydrographs and models internal variables.
Simple radiocarbon calibration and chronological analysis. This package allows the calibration of radiocarbon ages and modern carbon fraction values using multiple calibration curves. It allows the calculation of highest density region intervals and credible intervals. The package also provides tools for visualising results and estimating statistical summaries.
The generated wealth of immune repertoire sequencing data requires software to investigate and quantify inter- and intra-antibody repertoire evolution to uncover how B cells evolve during immune responses. Here, we present AntibodyForests', a software to investigate and quantify inter- and intra-antibody repertoire evolution.
Package ACV (short for Affine Cross-Validation) offers an improved time-series cross-validation loss estimator which utilizes both in-sample and out-of-sample forecasting performance via a carefully constructed affine weighting scheme. Under the assumption of stationarity, the estimator is the best linear unbiased estimator of the out-of-sample loss. Besides that, the package also offers improved versions of Diebold-Mariano and Ibragimov-Muller tests of equal predictive ability which deliver more power relative to their conventional counterparts. For more information, see the accompanying article Stanek (2021) <doi:10.2139/ssrn.3996166>.
In mathematics, rejection sampling is a basic technique used to generate observations from a distribution. It is also commonly called the Acceptance-Rejection method or Accept-Reject algorithm and is a type of Monte Carlo method. Acceptance-Rejection method is based on the observation that to sample a random variable one can perform a uniformly random sampling of the 2D cartesian graph, and keep the samples in the region under the graph of its density function. Package AR is able to generate/simulate random data from a probability density function by Acceptance-Rejection method. Moreover, this package is a useful teaching resource for graphical presentation of Acceptance-Rejection method. From the practical point of view, the user needs to calculate a constant in Acceptance-Rejection method, which package AR is able to compute this constant by optimization tools. Several numerical examples are provided to illustrate the graphical presentation for the Acceptance-Rejection Method.
Wraps the Ace editor in a HTML widget. The Ace editor has support for many languages. It can be opened in the viewer pane of RStudio', and this provides a second source editor.
This package creates pre- and post- intervention scattergrams based on audiometric data. These scattergrams are formatted for publication in Otology & Neurotology and other otolaryngology journals. For more details, see Gurgel et al (2012) <doi:10.1177/0194599812458401>, Oghalai and Jackler (2016) <doi:10.1177/0194599816638314>.
Utilities designed to make the analysis of field trials easier and more accessible for everyone working in plant breeding. It provides a simple and intuitive interface for conducting single and multi-environmental trial analysis, with minimal coding required. Whether you're a beginner or an experienced user, agriutilities will help you quickly and easily carry out complex analyses with confidence. With built-in functions for fitting Linear Mixed Models, agriutilities is the ideal choice for anyone who wants to save time and focus on interpreting their results. Some of the functions require the R package asreml for the ASReml software, this can be obtained upon purchase from VSN international <https://vsni.co.uk/software/asreml-r/>.
This package provides functions for interacting directly with the ALTADATA API. With this R package, developers can build applications around the ALTADATA API without having to deal with accessing and managing requests and responses. ALTADATA is a curated data marketplace for more information go to <https://www.altadata.io>.
This package performs the analysis of completely randomized experimental designs (CRD), randomized blocks (RBD) and Latin square (LSD), experiments in double and triple factorial scheme (in CRD and RBD), experiments in subdivided plot scheme (in CRD and RBD), subdivided and joint analysis of experiments in CRD and RBD, linear regression analysis, test for two samples. The package performs analysis of variance, ANOVA assumptions and multiple comparison test of means or regression, according to Pimentel-Gomes (2009, ISBN: 978-85-7133-055-9), nonparametric test (Conover, 1999, ISBN: 0471160687), test for two samples, joint analysis of experiments according to Ferreira (2018, ISBN: 978-85-7269-566-4) and generalized linear model (glm) for binomial and Poisson family in CRD and RBD (Carvalho, FJ (2019), <doi:10.14393/ufu.te.2019.1244>). It can also be used to obtain descriptive measures and graphics, in addition to correlations and creative graphics used in agricultural sciences (Agronomy, Zootechnics, Food Science and related areas). Shimizu, G. D., Marubayashi, R. Y. P., Goncalves, L. S. A. (2025) <doi:10.4025/actasciagron.v47i1.73889>.
The anomalize package enables a "tidy" workflow for detecting anomalies in data. The main functions are time_decompose(), anomalize(), and time_recompose(). When combined, it's quite simple to decompose time series, detect anomalies, and create bands separating the "normal" data from the anomalous data at scale (i.e. for multiple time series). Time series decomposition is used to remove trend and seasonal components via the time_decompose() function and methods include seasonal decomposition of time series by Loess ("stl") and seasonal decomposition by piecewise medians ("twitter"). The anomalize() function implements two methods for anomaly detection of residuals including using an inner quartile range ("iqr") and generalized extreme studentized deviation ("gesd"). These methods are based on those used in the forecast package and the Twitter AnomalyDetection package. Refer to the associated functions for specific references for these methods.
This package provides functions to create image annotations through polygon outlining. Annotator has the same function as graphics::locator() but achieves its purpose through drawing, rather than multiple mouse clicks. It is based on the htmlwidgets package and fabric.js JavaScript library <https://fabricjs.com/>.
The irregularly-spaced data are interpolated onto regular latitude-longitude grids by weighting each station according to its distance and angle from the center of a search radius. In addition to this, we also provide a simple way (Jones and Hulme, 1996) to grid the irregularly-spaced data points onto regular latitude-longitude grids by averaging all stations in grid-boxes.
Computationally efficient method to estimate orthant probabilities of high-dimensional Gaussian vectors. Further implements a function to compute conservative estimates of excursion sets under Gaussian random field priors.
Research of subgroups in random clinical trials with binary outcome and two treatments groups. This is an adaptation of the Jared Foster method (<https://www.ncbi.nlm.nih.gov/pubmed/21815180>).
Align-GVGD ('A-GVGD') is a method to predict the impact of missense substitutions based on the properties of amino acid side chains and protein multiple sequence alignments <doi:10.1136/jmg.2005.033878>. A-GVGD is an extension of the original Grantham distance to multiple sequence alignments. This package provides an alternative R implementation to the web version found on <http://agvgd.hci.utah.edu/>.
Adaptive Sparse Multi-block Partial Least Square, a supervised algorithm, is an extension of the Sparse Multi-block Partial Least Square, which allows different quantiles to be used in different blocks of different partial least square components to decide the proportion of features to be retained. The best combinations of quantiles can be chosen from a set of user-defined quantiles combinations by cross-validation. By doing this, it enables us to do the feature selection for different blocks, and the selected features can then be further used to predict the outcome. For example, in biomedical applications, clinical covariates plus different types of omics data such as microbiome, metabolome, mRNA data, methylation data, copy number variation data might be predictive for patients outcome such as survival time or response to therapy. Different types of data could be put in different blocks and along with survival time to fit the model. The fitted model can then be used to predict the survival for the new samples with the corresponding clinical covariates and omics data. In addition, Adaptive Sparse Multi-block Partial Least Square Discriminant Analysis is also included, which extends Adaptive Sparse Multi-block Partial Least Square for classifying the categorical outcome.
This package provides a simple driver that reads binary data created by the ASD Inc. portable spectrometer instruments, such as the FieldSpec (for more information, see <http://www.asdi.com/products/fieldspec-spectroradiometers>). Spectral data can be extracted from the ASD files as raw (DN), white reference, radiance, or reflectance. Additionally, the metadata information contained in the ASD file header can also be accessed.