Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
An implementation of the Fizz Buzz algorithm, as defined e.g. in <https://en.wikipedia.org/wiki/Fizz_buzz>. It provides the standard algorithm with 3 replaced by Fizz and 5 replaced by Buzz, with the option of specifying start and end numbers, step size and the numbers being replaced by fizz and buzz, respectively. This package gives interviewers the optional answer of "I use fizzbuzzR::fizzbuzz()" when interviewing rather than having to write an algorithm themselves.
This package provides a web application for displaying, analysing and forecasting univariate time series. Includes basic methods such as mean, naïve, seasonal naïve and drift, as well as more complex methods such as Holt-Winters Box,G and Jenkins, G (1976) <doi:10.1111/jtsa.12194> and ARIMA Brockwell, P.J. and R.A.Davis (1991) <doi:10.1007/978-1-4419-0320-4>.
All data sets required for the examples and exercises in the book "Forecasting: principles and practice" by Rob J Hyndman and George Athanasopoulos <https://OTexts.com/fpp3/>. All packages required to run the examples are also loaded. Additional data sets not used in the book are also included.
Find functions in an unstructured directory and explore their dependencies. Sourcing of R source files is performed without side-effects: from R scripts that have executable code and function definitions only functions are sourced.
Impute general multivariate missing data with the fractional hot deck imputation based on Jaekwang Kim (2011) <doi:10.1093/biomet/asq073>.
This package provides a collection of functions to manage, to investigate and to analyze bivariate financial returns by Copulae. Included are the families of Archemedean, Elliptical, Extreme Value, and Empirical Copulae.
S4 classes for univariate and multivariate functional data with utility functions. See <doi:10.18637/jss.v093.i05> for a detailed description of the package functionalities and its interplay with the MFPCA package for multivariate functional principal component analysis <https://CRAN.R-project.org/package=MFPCA>.
Data and functions for the book "Multivariate Statistical Modelling Based on Generalized Linear Models", first edition, by Ludwig Fahrmeir and Gerhard Tutz. Useful when using the book.
Generates a frequency distribution. The frequency distribution includes raw frequencies, percentages in each category, and cumulative frequencies. The frequency distribution can be stored as a data frame.
Compute alpha and beta contributional diversity metrics, which is intended for linking taxonomic and functional microbiome data. See GitHub repository for the tutorial: <https://github.com/gavinmdouglas/FuncDiv/wiki>. Citation: Gavin M. Douglas, Sunu Kim, Morgan G. I. Langille, B. Jesse Shapiro (2023) <doi:10.1093/bioinformatics/btac809>.
This package provides a study based on the screened selection design (SSD) is an exploratory phase II randomized trial with two or more arms but without concurrent control. The primary aim of the SSD trial is to pick a desirable treatment arm (e.g., in terms of the median survival time) to recommend to the subsequent randomized phase IIb (with the concurrent control) or phase III. Though The survival endpoint is often encountered in phase II trials, the existing SSD methods cannot deal with the survival endpoint. Furthermore, the existing SSD wonâ t control the type I error rate. The proposed designs can â partiallyâ control or provide the empirical type I error/false positive rate by an optimal algorithm (implemented by the optimal() function) for each arm. All the design needed components (sample size, operating characteristics) are supported.
Multiple testing procedures for heterogeneous and discrete tests as described in Döhler and Roquain (2020) <doi:10.1214/20-EJS1771>. The main algorithms of the paper are available as continuous, discrete and weighted versions. They take as input the results of a test procedure from package DiscreteTests', or a set of observed p-values and their discrete support under their nulls. A shortcut function to obtain such p-values and supports is also provided, along with wrappers allowing to apply discrete procedures directly to data.
This package provides functions for analysing and modelling extreme events in financial time Series. The topics include: (i) data pre-processing, (ii) explorative data analysis, (iii) peak over threshold modelling, (iv) block maxima modelling, (v) estimation of VaR and CVaR, and (vi) the computation of the extreme index.
FLR algorithm for classification.
Fuzzy clustering of species in an ecological community as common or rare based on their abundance and occupancy. It also includes functions to compute confidence intervals of classification metrics and plot results. See Balbuena et al. (2020, <doi:10.1101/2020.08.12.247502>).
This package provides quick and easy access to official spatial data from Germanyâ s Federal Agency for Cartography and Geodesy (BKG) <https://gdz.bkg.bund.de/>. Interfaces various web feature services (WFS) and download servers. Allows retrieval, caching and filtering with a wide range of open geodata products, including administrative or non-administrative boundaries, land cover, elevation models, geographic names, and points of interest covering Germany. Can be particularly useful for linking regional statistics to their spatial representations and streamlining workflows that involve spatial data of Germany.
Regular and non-regular Fractional Factorial 2-level designs can be created. Furthermore, analysis tools for Fractional Factorial designs with 2-level factors are offered (main effects and interaction plots for all factors simultaneously, cube plot for looking at the simultaneous effects of three factors, full or half normal plot, alias structure in a more readable format than with the built-in function alias).
In Australia, a financial year (or fiscal year) is the period from 1 July to 30 June of the following calendar year. As such, many databases need to represent and validate financial years efficiently. While the use of integer years with a convention that they represent the year ending is common, it may lead to ambiguity with calendar years. On the other hand, string representations may be too inefficient and do not easily admit arithmetic operations. This package tries to make validation of financial years quicker while retaining clarity.
Efficiently implementing two complementary methodologies for discovering motifs in functional data: ProbKMA and FunBIalign. Cremona and Chiaromonte (2023) "Probabilistic K-means with Local Alignment for Clustering and Motif Discovery in Functional Data" <doi:10.1080/10618600.2022.2156522> is a probabilistic K-means algorithm that leverages local alignment and fuzzy clustering to identify recurring patterns (candidate functional motifs) across and within curves, allowing different portions of the same curve to belong to different clusters. It includes a family of distances and a normalization to discover various motif types and learns motif lengths in a data-driven manner. It can also be used for local clustering of misaligned data. Di Iorio, Cremona, and Chiaromonte (2023) "funBIalign: A Hierarchical Algorithm for Functional Motif Discovery Based on Mean Squared Residue Scores" <doi:10.48550/arXiv.2306.04254> applies hierarchical agglomerative clustering with a functional generalization of the Mean Squared Residue Score to identify motifs of a specified length in curves. This deterministic method includes a small set of user-tunable parameters. Both algorithms are suitable for single curves or sets of curves. The package also includes a flexible function to simulate functional data with embedded motifs, allowing users to generate benchmark datasets for validating and comparing motif discovery methods.
Data sets and utilities to accompany the second edition of "Foundations and Applications of Statistics: an Introduction using R" (R Pruim, published by AMS, 2017), a text covering topics from probability and mathematical statistics at an advanced undergraduate level. R is integrated throughout, and access to all the R code in the book is provided via the snippet() function.
Allows users to create and deploy the workflow with multiple functions in Function-as-a-Service (FaaS) cloud computing platforms. The FaaSr package makes it simpler for R developers to use FaaS platforms by providing the following functionality: 1) Parsing and validating a JSON-based payload compliant to FaaSr schema supporting multiple FaaS platforms 2) Invoking user functions written in R in a Docker container (derived from rocker), using a list generated from the parser as argument 3) Downloading/uploading of files from/to S3 buckets using simple primitives 4) Logging to files in S3 buckets 5) Triggering downstream actions supporting multiple FaaS platforms 6) Generating FaaS-specific API calls to simplify the registering of a user's workflow with a FaaS platform Supported FaaS platforms: Apache OpenWhisk <https://openwhisk.apache.org/> GitHub Actions <https://github.com/features/actions> Amazon Web Services (AWS) Lambda <https://aws.amazon.com/lambda/> Supported cloud data storage for persistent storage: Amazon Web Services (AWS) Simple Storage Service (S3) <https://aws.amazon.com/s3/>.
Fit data to an ellipse, hyperbola, or parabola. Bootstrapping is available when needed. The conic curve can be rotated through an arbitrary angle and the fit will still succeed. Helper functions are provided to convert generator coefficients from one style to another, generate test data sets, rotate conic section parameters, and so on. References include Nikolai Chernov (2014) "Fitting ellipses, circles, and lines by least squares" <https://people.cas.uab.edu/~mosya/cl/>; A. W. Fitzgibbon, M. Pilu, R. B. Fisher (1999) "Direct Least Squares Fitting of Ellipses" IEEE Trans. PAMI, Vol. 21, pages 476-48; N. Chernov, Q. Huang, and H. Ma (2014) "Fitting quadratic curves to data points", British Journal of Mathematics & Computer Science, 4, 33-60; N. Chernov and H. Ma (2011) "Least squares fitting of quadratic curves and surfaces", Computer Vision, Editor S. R. Yoshida, Nova Science Publishers, pp. 285-302.
This package performs backward elimination with similar syntax to the stepAIC() function from the MASS package. A bounding algorithm is used to avoid fitting unnecessary models, making it much faster.
To help you access, transform, analyze, and visualize ForestGEO data, we developed a collection of R packages (<https://forestgeo.github.io/fgeo/>). This package, in particular, helps you to plot ForestGEO data. To learn more about ForestGEO visit <https://forestgeo.si.edu/>.