Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides a tool to use a principal component analysis on radially averaged two dimensional Fourier spectra to characterize image texture. The method within the context of ecology was first described by Couteron et al. (2005) <doi:10.1111/j.1365-2664.2005.01097.x> and expanded upon by Solorzano et al. (2018) <doi:10.1117/1.JRS.12.036006> using a moving window approach.
This package implements fast, scalable optimization algorithms for fitting generalized principal components analysis (GLM-PCA) models, as described in "A Generalization of Principal Components Analysis to the Exponential Family" Collins M, Dasgupta S, Schapire RE (2002, ISBN:9780262271738), and subsequently "Feature Selection and Dimension Reduction for Single-Cell RNA-Seq Based on a Multinomial Model" Townes FW, Hicks SC, Aryee MJ, Irizarry RA (2019) <doi:10.1186/s13059-019-1861-6>.
An implementation in Rcpp / RcppArmadillo of Partial Least Square algorithms. This package includes other functions to perform the double cross-validation and a fast correlation.
Routines for estimating tree fiber (tracheid) length distributions in the standing tree based on increment core samples. Two types of data can be used with the package, increment core data measured by means of an optical fiber analyzer (OFA), e.g. such as the Kajaani Fiber Lab, or measured by microscopy. Increment core data analyzed by OFAs consist of the cell lengths of both cut and uncut fibres (tracheids) and fines (such as ray parenchyma cells) without being able to identify which cells are cut or if they are fines or fibres. The microscopy measured data consist of the observed lengths of the uncut fibres in the increment core. A censored version of a mixture of the fine and fiber length distributions is proposed to fit the OFA data, under distributional assumptions (Svensson et al., 2006) <doi:10.1111/j.1467-9469.2006.00501.x>. The package offers two choices for the assumptions of the underlying density functions of the true fiber (fine) lenghts of those fibers (fines) that at least partially appear in the increment core, being the generalized gamma and the log normal densities.
This package provides tools to perform fuzzy formal concept analysis, presented in Wille (1982) <doi:10.1007/978-3-642-01815-2_23> and in Ganter and Obiedkov (2016) <doi:10.1007/978-3-662-49291-8>. It provides functions to load and save a formal context, extract its concept lattice and implications. In addition, one can use the implications to compute semantic closures of fuzzy sets and, thus, build recommendation systems.
Read and write PNG images with arrays, rasters, native rasters, numeric arrays, integer arrays, raw vectors and indexed values. This PNG encoder exposes configurable internal options enabling the user to select a speed-size tradeoff. For example, disabling compression can speed up writing PNG by a factor of 50. Multiple image formats are supported including raster, native rasters, and integer and numeric arrays at color depths of 1, 2, 3 or 4. 16-bit images are also supported. This implementation uses the libspng C library which is available from <https://github.com/randy408/libspng/>.
The user can directly compute and display false discovery rates from inputted p-values or z-scores under a variety of assumptions. p.fdr() computes FDRs, adjusted p-values and decision reject vectors from inputted p-values or z-values. get.pi0() estimates the proportion of data that are truly null. plot.p.fdr() plots the FDRs, adjusted p-values, and the raw p-values points against their rejection threshold lines.
This package creates participant flow diagrams directly from a dataframe. Representing the flow of participants through each stage of a study, especially in clinical trials, is essential to assess the generalisability and validity of the results. This package provides a set of functions that can be combined with a pipe operator to create all kinds of flowcharts from a data frame in an easy way.
Estimates fuzzy measures of poverty and deprivation. It also estimates the sampling variance of these measures using bootstrap or jackknife repeated replications.
This package provides tools to work with the Flexible Dirichlet distribution. The main features are an E-M algorithm for computing the maximum likelihood estimate of the parameter vector and a function based on conditional bootstrap to estimate its asymptotic variance-covariance matrix. It contains also functions to plot graphs, to generate random observations and to handle compositional data.
This package creates a scatter plot after residualizing using a set of covariates. The residuals are calculated using the fixest package which allows very fast estimation that scales. Details of the (Yule-)Frisch-Waugh-Lovell theorem is given in Basu (2023) <doi:10.48550/arXiv.2307.00369>.
Efficient computation of the Liu regression coefficient paths, Liu-related statistics and information criteria for a grid of the regularization parameter. The computations are based on the C++ library Armadillo through the R package Rcpp'.
An implementation of regression models with partial differential regularizations, making use of the Finite Element Method. The models efficiently handle data distributed over irregularly shaped domains and can comply with various conditions at the boundaries of the domain. A priori information about the spatial structure of the phenomenon under study can be incorporated in the model via the differential regularization. See Sangalli, L. M. (2021) <doi:10.1111/insr.12444> "Spatial Regression With Partial Differential Equation Regularisation" for an overview. The release 1.1-9 requires R (>= 4.2.0) to be installed on windows machines.
Fits models to catch and effort data. Single-species models are 1) delta log-normal, 2) Tweedie, or 3) Poisson-gamma (G)LMs.
This package provides functions to switch the BLAS'/'LAPACK optimized backend and change the number of threads without leaving the R session, which needs to be linked against the FlexiBLAS wrapper library <https://www.mpi-magdeburg.mpg.de/projects/flexiblas>.
Interactive forest plot for clinical trial safety analysis using metalite', reactable', plotly', and Analysis Data Model (ADaM) datasets. Includes functionality for adverse event filtering, incidence-based group filtering, hover-over reveals, and search and sort operations. The workflow allows for metadata construction, data preparation, output formatting, and interactive plot generation.
Create, visualize, and test fast-and-frugal decision trees (FFTs) using the algorithms and methods described by Phillips, Neth, Woike & Gaissmaier (2017), <doi:10.1017/S1930297500006239>. FFTs are simple and transparent decision trees for solving binary classification problems. FFTs can be preferable to more complex algorithms because they require very little information, are easy to understand and communicate, and are robust against overfitting.
This package provides tools to analyze R source code and detect function definitions and their internal dependencies across multiple files. Creates interactive network visualizations using visNetwork to display function call relationships, with detailed tooltips showing function arguments, return values, and documentation. Supports both individual files and directory-based analysis with automatic file detection. Useful for understanding code structure, identifying dependencies, and documenting R projects.
Single unified interface for end-to-end modelling of regression, categorical and time-to-event (survival) outcomes. Models created using familiar are self-containing, and their use does not require additional information such as baseline survival, feature clustering, or feature transformation and normalisation parameters. Model performance, calibration, risk group stratification, (permutation) variable importance, individual conditional expectation, partial dependence, and more, are assessed automatically as part of the evaluation process and exported in tabular format and plotted, and may also be computed manually using export and plot functions. Where possible, metrics and values obtained during the evaluation process come with confidence intervals.
We propose an objective Bayesian algorithm for searching the space of Gaussian directed acyclic graph (DAG) models. The algorithm uses moment fractional Bayes factors (MFBF) and is suitable for learning sparse graphs. The algorithm is implemented using Armadillo, an open-source C++ linear algebra library.
This package provides a collection of utility functions to download and manage data sets from the Internet or from other sources.
Helps you imagine your data before you collect it. Hierarchical data structures and correlated data can be easily simulated, either from random number generators or by resampling from existing data sources. This package is faster with data.table and mvnfast installed.
Statistical hypothesis testing methods for inferring model-free functional dependency using asymptotic chi-squared or exact distributions. Functional test statistics are asymmetric and functionally optimal, unique from other related statistics. Tests in this package reveal evidence for causality based on the causality-by- functionality principle. They include asymptotic functional chi-squared tests (Zhang & Song 2013) <doi:10.48550/arXiv.1311.2707>, an adapted functional chi-squared test (Kumar & Song 2022) <doi:10.1093/bioinformatics/btac206>, and an exact functional test (Zhong & Song 2019) <doi:10.1109/TCBB.2018.2809743> (Nguyen et al. 2020) <doi:10.24963/ijcai.2020/372>. The normalized functional chi-squared test was used by Best Performer NMSUSongLab in HPN-DREAM (DREAM8) Breast Cancer Network Inference Challenges (Hill et al. 2016) <doi:10.1038/nmeth.3773>. A function index (Zhong & Song 2019) <doi:10.1186/s12920-019-0565-9> (Kumar et al. 2018) <doi:10.1109/BIBM.2018.8621502> derived from the functional test statistic offers a new effect size measure for the strength of functional dependency, a better alternative to conditional entropy in many aspects. For continuous data, these tests offer an advantage over regression analysis when a parametric functional form cannot be assumed; for categorical data, they provide a novel means to assess directional dependency not possible with symmetrical Pearson's chi-squared or Fisher's exact tests.
Generates RProtobuf classes for FactSet STACH V2 tabular format which represents complex multi-dimensional array of data. These classes help in the serialization and deserialization of STACH V2 formatted data. See GitHub repository documentation for more information.