Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Comparisons of floating point numbers are problematic due to errors associated with the binary representation of decimal numbers. Despite being aware of these problems, people still use numerical methods that fail to account for these and other rounding errors (this pitfall is the first to be highlighted in Circle 1 of Burns (2012) The R Inferno <https://www.burns-stat.com/pages/Tutor/R_inferno.pdf>). This package provides new relational operators useful for performing floating point number comparisons with a set tolerance.
This package provides methods to "add" two R tables; also an alternative interpretation of named vectors as generalized R tables, so that c(a=1,b=2,c=3) + c(b=3,a=-1) will return c(b=5,c=3). Uses disordR discipline (Hankin, 2022, <doi:10.48550/arXiv.2210.03856>). Extraction and replacement methods are provided. The underlying mathematical structure is the Free Abelian group, hence the name. To cite in publications please use Hankin (2023) <doi:10.48550/arXiv.2307.13184>.
This package provides efficient methods to compute local and genome wide genetic distances (corresponding to the so called Hudson Fst parameters) through moment method, perform chromosome segmentation into homogeneous Fst genomic regions, and selection sweep detection for multi-population comparison. When multiple profile segmentation is required, the procedure can be parallelized using the future package.
Estimation of mixed models including a subject-specific variance which can be time and covariate dependent. In the joint model framework, the package handles left truncation and allows a flexible dependence structure between the competing events and the longitudinal marker. The estimation is performed under the frequentist framework, using the Marquardt-Levenberg algorithm. (Courcoul, Tzourio, Woodward, Barbieri, Jacqmin-Gadda (2023) <arXiv:2306.16785>).
Likelihood-free inference method for stochastic models. Uses a deterministic optimizer on simple simulations of the model that are performed with a prior drawn randomness by applying the inverse transform method. Is designed to work on its own and also by using the Julia package Jflimo available on the git page of the project: <https://metabarcoding.org/flimo>.
This package provides tools to estimate the genome size of polyploid species using k-mer frequencies. This package includes functions to process k-mer frequency data and perform genome size estimation by fitting k-mer frequencies with a normal distribution model. It supports handling of complex polyploid genomes and offers various options for customizing the estimation process. The basic method findGSE is detailed in Sun, Hequan, et al. (2018) <doi:10.1093/bioinformatics/btx637>.
Download data sets from Kenneth's French finance data library site <http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html>, reads all the data subsets from the file. Allows R users to collect the data as tidyverse'-ready data frames.
Computes unidimensional and multidimensional Reciprocity and Inaccuracy indices. These indices are applicable to common heterostylous populations and to any other type of stylar dimorphic and trimorphic populations, such as in enantiostylous and three-dimensional heterostylous plants. Simón-Porcar, V., A. J. Muñoz-Pajares, J. Arroyo, and S. D. Johnson. (in press) "FlowerMate: multidimensional reciprocity and inaccuracy indices for style-polymorphic plant populations.".
Generating fractional binomial random variables and computing density, cumulative distribution, and quantiles of fractional binomial distributions. (Lee, J. (2023) <arXiv:2209.01516>.).
This is a method for Allele-specific DNA Copy Number Profiling using Next-Generation Sequencing. Given the allele-specific coverage at the variant loci, this program segments the genome into regions of homogeneous allele-specific copy number. It requires, as input, the read counts for each variant allele in a pair of case and control samples. For detection of somatic mutations, the case and control samples can be the tumor and normal sample from the same individual.
This package provides a method which uses the Cochran-Mantel-Haenszel test with significant pattern mining to detect intervals in binary genotype data which are significantly associated with a particular phenotype, while accounting for categorical covariates.
Feature flags allow developers to turn features of their software on and off in form of configuration. This package provides functions for creating feature flags in code. It exposes an interface for defining own feature flags which are enabled based on custom criteria.
This package provides a friendly interface for modifying data frames with a sequence of piped commands built upon the tidyverse Wickham et al., (2019) <doi:10.21105/joss.01686> . The majority of commands wrap dplyr mutate statements in a convenient way to concisely solve common issues that arise when tidying small to medium data sets. Includes smart defaults and allows flexible selection of columns via tidyselect'.
Simulation and analysis of Fully-Latent Principal Stratification (FLPS) with measurement models. Lee, Adam, Kang, & Whittaker (2023). <doi:10.1007/978-3-031-27781-8_25>. This package is supported by the Institute of Education Sciences, U.S. Department of Education, through Grant R305D210036.
Simulating and plotting taxonomy and fossil data on phylogenetic trees under mechanistic models of speciation, preservation and sampling.
Create and visualize fractal trees and fractal forests, based on the Lindenmayer system (L-system). For more details see Lindenmayer (1968a) <doi:10.1016/0022-5193(68)90079-9> and Lindenmayer (1968b) <doi:10.1016/0022-5193(68)90080-5>.
This package provides a tidy R interface for count time series analysis. It includes implementation of the INGARCH (Integer Generalized Autoregressive Conditional Heteroskedasticity) model from the tscount package and the GLARMA (Generalized Linear Autoregressive Moving Averages) model from the glarma package. Additionally, it offers automated parameter selection algorithms based on the minimization of a penalized likelihood.
The CRAN check results and where your package stands in the CRAN submission queue in your R terminal.
In order to achieve accurate estimation without sparsity assumption on the precision matrix, element-wise inference on the precision matrix, and joint estimation of multiple Gaussian graphical models, a novel method is proposed and efficient algorithm is implemented. FLAG() is the main function given a data matrix, and FlagOneEdge() will be used when one pair of random variables are interested where their indices should be given. Flexible and Accurate Methods for Estimation and Inference of Gaussian Graphical Models with Applications, see Qian Y (2023) <doi:10.14711/thesis-991013223054603412>, Qian Y, Hu X, Yang C (2023) <doi:10.48550/arXiv.2306.17584>.
Query data hosted in Microsoft Fabric'. Provides helpers to open DBI connections to SQL endpoints of Lakehouse and Data Warehouse items; submit Data Analysis Expressions ('DAX') queries to semantic model datasets in Microsoft Fabric and Power BI'; read Delta Lake tables stored in OneLake ('Azure Data Lake Storage Gen2'); and execute Spark code via the Livy API'.
This package provides the probability density function (PDF), cumulative distribution function (CDF), the first-order and second-order partial derivatives of the PDF, and a fitting function for the diffusion decision model (DDM; e.g., Ratcliff & McKoon, 2008, <doi:10.1162/neco.2008.12-06-420>) with across-trial variability in the drift rate. Because the PDF, its partial derivatives, and the CDF of the DDM both contain an infinite sum, they need to be approximated. fddm implements all published approximations (Navarro & Fuss, 2009, <doi:10.1016/j.jmp.2009.02.003>; Gondan, Blurton, & Kesselmeier, 2014, <doi:10.1016/j.jmp.2014.05.002>; Blurton, Kesselmeier, & Gondan, 2017, <doi:10.1016/j.jmp.2016.11.003>; Hartmann & Klauer, 2021, <doi:10.1016/j.jmp.2021.102550>) plus new approximations. All approximations are implemented purely in C++ providing faster speed than existing packages.
Quantify variability (such as confidence interval) of fertilizer response curves and optimum fertilizer rates using bootstrapping residuals with several popular non-linear and linear models.
Formula 1 pit stop data. The package provides information on teams and drivers across seasons (2025 or higher). It also includes a function to visualize pit stop performance.
This package provides a suite of methods for detecting influential subjects in longitudinal datasets, particularly when observations occur at irregular time points. The methods identify individuals whose response trajectories deviate significantly from the population pattern, enabling detection of anomalies or subjects exerting undue influence on model outcomes.