Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides a flexible interface to the Financial Modeling Prep API <https://site.financialmodelingprep.com/developer/docs>. The package supports all available endpoints and parameters, enabling R users to interact with a wide range of financial data.
This package provides tools to support systematic and reproducible workflows for both stationary and nonstationary flood frequency analysis, with applications extending to other hydroclimate extremes, such as precipitation frequency analysis. This package implements the FFA framework proposed by Vidrio- Sahagún et al. (2024) <doi:10.1016/j.envsoft.2024.105940>, originally developed in MATLAB', now adapted for the R environment. This work was funded by the Flood Hazard Identification and Mapping Program of Environment and Climate Change Canada, as well as the Canada Research Chair (Tier 1) awarded to Dr. Pietroniro.
This package provides a collection of features, decomposition methods, statistical summaries and graphics functions for the analysing tidy time series data. The package name feasts is an acronym comprising of its key features: Feature Extraction And Statistics for Time Series.
Binding to the C++ implementation of the flexible polyline encoding by HERE <https://github.com/heremaps/flexible-polyline>. The flexible polyline encoding is a lossy compressed representation of a list of coordinate pairs or coordinate triples. The encoding is achieved by: (1) Reducing the decimal digits of each value; (2) encoding only the offset from the previous point; (3) using variable length for each coordinate delta; and (4) using 64 URL-safe characters to display the result.
It calculates the alpha-quantile proposed by Daouia and Simar (2007) <doi:10.1016/j.jeconom.2006.07.002> and order-m efficiency score in multi-dimension proposed by Daouia and Gijbels (2011) <doi:10.1016/j.jeconom.2010.12.002> and computes several summaries and representation of the associated frontiers in 2d and 3d.
Quantify variability (such as confidence interval) of fertilizer response curves and optimum fertilizer rates using bootstrapping residuals with several popular non-linear and linear models.
An R client for the freecurrencyapi.com currency conversion API. The API requires registration of an API key. You can find the full API documentation at <https://freecurrencyapi.com/docs> .
Average rating and number of votes reported by IMDb for films and shorts with over 100 votes in 2022. The data are analysed in Chapter 3 of the Book Getting (more out of) Graphics (Antony Unwin, CRC Press 2024).
The aim is to take in data.frame inputs and utilises methods, such as recursive feature engineering, to enable the features to be removed. What this does differently from the other packages, is that it gives you the choice to remove the variables manually, or it automated this process. Feature selection is a concept in machine learning, and statistical pipelines, whereby unimportant, or less predictive variables are eliminated from the analysis, see Boughaci (2018) <doi:10.1007/s40595-018-0107-y>.
Authenticate users in Shiny applications using Google Firebase with any of the many methods provided; email and password, email link, or using a third-party provider such as Github', Twitter', or Google'. Use Firebase Storage to store files securely, and leverage Firebase Analytics to easily log events and better understand your audience.
R companion to Tsay (2005) Analysis of Financial Time Series, second edition (Wiley). Includes data sets, functions and script files required to work some of the examples. Version 0.3-x includes R objects for all data files used in the text and script files to recreate most of the analyses in chapters 1-3 and 9 plus parts of chapters 4 and 11.
This package provides functions and example datasets for Fechnerian scaling of discrete object sets. User can compute Fechnerian distances among objects representing subjective dissimilarities, and other related information. See package?fechner for an overview.
For binomial outcome data Alternate Binomial Distributions and Binomial Mixture Distributions are fitted when overdispersion is available.
This package provides functions that calculates common types of splitting criteria used in random forests for classification problems, as well as functions that make predictions based on a single tree or a Forest-R.K. model; the package also provides functions to generate importance plot for a Forest-R.K. model, as well as the 2D multidimensional-scaling plot of data points that are colour coded by their predicted class types by the Forest-R.K. model. This package is based on: Bernard, S., Heutte, L., Adam, S., (2008, ISBN:978-3-540-85983-3) "Forest-R.K.: A New Random Forest Induction Method", Fourth International Conference on Intelligent Computing, September 2008, Shanghai, China, pp.430-437.
This package provides a tool for spatial/spatio-temporal modelling and prediction with large datasets. The approach models the field, and hence the covariance function, using a set of basis functions. This fixed-rank basis-function representation facilitates the modelling of big data, and the method naturally allows for non-stationary, anisotropic covariance functions. Discretisation of the spatial domain into so-called basic areal units (BAUs) facilitates the use of observations with varying support (i.e., both point-referenced and areal supports, potentially simultaneously), and prediction over arbitrary user-specified regions. `FRK` also supports inference over various manifolds, including the 2D plane and 3D sphere, and it provides helper functions to model, fit, predict, and plot with relative ease. Version 2.0.0 and above also supports the modelling of non-Gaussian data (e.g., Poisson, binomial, negative-binomial, gamma, and inverse-Gaussian) by employing a generalised linear mixed model (GLMM) framework. Zammit-Mangion and Cressie <doi:10.18637/jss.v098.i04> describe `FRK` in a Gaussian setting, and detail its use of basis functions and BAUs, while Sainsbury-Dale, Zammit-Mangion, and Cressie <doi:10.18637/jss.v108.i10> describe `FRK` in a non-Gaussian setting; two vignettes are available that summarise these papers and provide additional examples.
This package implements methods for network estimation and forecasting of high-dimensional time series exhibiting strong serial and cross-sectional correlations under a factor-adjusted vector autoregressive model. See Barigozzi, Cho and Owens (2024+) <doi:10.1080/07350015.2023.2257270> for further descriptions of FNETS methodology and Owens, Cho and Barigozzi (2024+) <arXiv:2301.11675> accompanying the R package.
Dataset of 302 measurements of 11 fish species to accompany the manuscript "Length-weight relationships of six freshwater fish species from lake Kirkkojarvi, Finland".
The function estimates a multivariate regression model for outcomes with network dependence.
Implementation of the Factorized Binary Search (FaBiSearch) methodology for the estimation of the number and the location of multiple change points in the network (or clustering) structure of multivariate high-dimensional time series. The method is motivated by the detection of change points in functional connectivity networks for functional magnetic resonance imaging (fMRI) data. FaBiSearch uses non-negative matrix factorization (NMF), an unsupervised dimension reduction technique, and a new binary search algorithm to identify multiple change points. It requires minimal assumptions. Lastly, we provide interactive, 3-dimensional, brain-specific network visualization capability in a flexible, stand-alone function. This function can be conveniently used with any node coordinate atlas, and nodes can be color coded according to community membership, if applicable. The output is an elegantly displayed network laid over a cortical surface, which can be rotated in the 3-dimensional space. The main routines of the package are detect.cps(), for multiple change point detection, est.net(), for estimating a network between stationary multivariate time series, net.3dplot(), for plotting the estimated functional connectivity networks, and opt.rank(), for finding the optimal rank in NMF for a given data set. The functions have been extensively tested on simulated multivariate high-dimensional time series data and fMRI data. For details on the FaBiSearch methodology, please see Ondrus et al. (2021) <arXiv:2103.06347>. For a more detailed explanation and applied examples of the fabisearch package, please see Ondrus and Cribben (2022), preprint.
This package provides a collection of utility functions for manipulating and analyzing factor vectors in R. It offers tools for filtering, splitting, combining, and reordering factor levels based on various criteria. The package is designed to simplify common tasks in categorical data analysis, making it easier to work with factors in a flexible and efficient manner.
Finds the critical sample size ("critical point of stability") for a correlation to stabilize in Schoenbrodt and Perugini's definition of sequential stability (see <doi:10.1016/j.jrp.2013.05.009>).
Download flight and airport data from Brazilâ s Civil Aviation Agency (ANAC) <https://www.gov.br/anac/pt-br>. The data covers detailed information on aircraft, airports, and airport operations registered with ANAC. It also includes data on airfares, all international flights to and from Brazil, and domestic flights within the country.
For functions that take and return vectors (or scalars), this package provides 8 algorithms for finding fixed point vectors (vectors for which the inputs and outputs to the function are the same vector). These algorithms include Anderson (1965) acceleration <doi:10.1145/321296.321305>, epsilon extrapolation methods (Wynn 1962 <doi:10.2307/2004051>) and minimal polynomial methods (Cabay and Jackson 1976 <doi:10.1137/0713060>).
This package provides a research estimation tool for analysts that work with sample-based inventory data from the U.S. Department of Agriculture, Forest Service, Forest Inventory and Analysis (FIA) Program.