Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Forensic applications of pedigree analysis, including likelihood ratios for relationship testing, general relatedness inference, marker simulation, and power analysis. forrel is part of the pedsuite', a collection of packages for pedigree analysis, further described in the book Pedigree Analysis in R (Vigeland, 2021, ISBN:9780128244302). Several functions deal specifically with power analysis in missing person cases, implementing methods described in Vigeland et al. (2020) <doi:10.1016/j.fsigen.2020.102376>. Data import from the Familias software (Egeland et al. (2000) <doi:10.1016/S0379-0738(00)00147-X>) is supported through the pedFamilias package.
Include a countdown <https://github.com/PButcher/flipdown> in all R contexts with the convenience of htmlwidgets'.
This package provides functions for importing, creating, editing and exporting FSK files <https://foodrisklabs.bfr.bund.de/fskx-food-safety-knowledge-exchange-format/> using the R programming environment. Furthermore, it enables users to run simulations contained in the FSK files and visualize the results.
This package provides analytics directly from R'. It requires: FormShare App': <https://github.com/qlands/FormShare >= 2.22.0> . Analytics plugin: <https://github.com/qlands/formshare_analytics_plugin> . Remote SQL plugin: <https://github.com/qlands/formshare_sql_plugin> .
Implementation of the Stochastic Expectation Maximisation (StEM) approach to Record Linkage described in the paper by K. Robach, S. L. van der Pas, M. A. van de Wiel and M. H. Hof (2024, <doi:10.1093/jrsssc/qlaf016>); see citation("FlexRL") for details. This is a record linkage method, for finding the common set of records among 2 data sources based on Partially Identifying Variables (PIVs) available in both sources. It includes modelling of dynamic Partially Identifying Variables (e.g. postal code) that may evolve over time and registration errors (missing values and mistakes in the registration). Low memory footprint.
This package provides a C++ API for routinely used numerical tools such as integration, root-finding, and optimization, where function arguments are given as lambdas. This facilitates Rcpp programming, enabling the development of R'-like code in C++ where functions can be defined on the fly and use variables in the surrounding environment.
Optimal experimental designs for functional linear and functional generalised linear models, for scalar responses and profile/dynamic factors. The designs are optimised using the coordinate exchange algorithm. The methods are discussed by Michaelides (2023) <https://eprints.soton.ac.uk/474982/1/Thesis_DamianosMichaelides_Final_pdfa_1_.pdf>.
All data sets required for the examples and exercises in the book "Forecasting: principles and practice" (2nd ed, 2018) by Rob J Hyndman and George Athanasopoulos <https://otexts.com/fpp2/>. All packages required to run the examples are also loaded.
Designed to streamline the process of analyzing genotyping data from Fluidigm machines, this package offers a suite of tools for data handling and analysis. It includes functions for converting Fluidigm data to format used by PLINK', estimating errors, calculating pairwise similarities, determining pairwise similarity loci, and generating a similarity matrix.
This package provides tools for describing and analysing free sorting data. Main methods are computation of consensus partition and factorial analysis of the dissimilarity matrix between stimuli (using multidimensional scaling approach).
Processing forest inventory data with methods such as simple random sampling, stratified random sampling and systematic sampling. There are also functions for yield and growth predictions and model fitting, linear and nonlinear grouped data fitting, and statistical tests. References: Kershaw Jr., Ducey, Beers and Husch (2016). <doi:10.1002/9781118902028>.
Implementation of color palettes based on fish species.
Estimates heterogeneous effects in factorial (and conjoint) models. The methodology employs a Bayesian finite mixture of regularized logistic regressions, where moderators can affect each observation's probability of group membership and a sparsity-inducing prior fuses together levels of each factor while respecting ANOVA-style sum-to-zero constraints. Goplerud, Imai, and Pashley (2024) <doi:10.48550/ARXIV.2201.01357> provide further details.
Compares how well different models estimate a quantity of interest (the "focus") so that different models may be preferred for different purposes. Comparisons within any class of models fitted by maximum likelihood are supported, with shortcuts for commonly-used classes such as generalised linear models and parametric survival models. The methods originate from Claeskens and Hjort (2003) <doi:10.1198/016214503000000819> and Claeskens and Hjort (2008, ISBN:9780521852258).
Creates, manipulates, and evaluates hemodynamic response functions and event-related regressors for functional magnetic resonance imaging data analysis. Supports multiple basis sets including Canonical, Gamma, Gaussian, B-spline, and Fourier bases. Features decorators for time-shifting and blocking, and efficient convolution algorithms for regressor construction. Methods are based on standard fMRI analysis techniques as described in Jezzard et al. (2001, ISBN:9780192630711).
We provide a framework for rendering complex tables to ASCII, and a set of formatters for transforming values or sets of values into ASCII-ready display strings.
This is an extremely fast implementation of a Naive Bayes classifier. This package is currently the only package that supports a Bernoulli distribution, a Multinomial distribution, and a Gaussian distribution, making it suitable for both binary features, frequency counts, and numerical features. Another feature is the support of a mix of different event models. Only numerical variables are allowed, however, categorical variables can be transformed into dummies and used with the Bernoulli distribution. The implementation is largely based on the paper "A comparison of event models for Naive Bayes anti-spam e-mail filtering" written by K.M. Schneider (2003) <doi:10.3115/1067807.1067848>. Any issues can be submitted to: <https://github.com/mskogholt/fastNaiveBayes/issues>.
The parameters p and q are estimated with the aid of a randomized Sierpinski Carpet which is built on a [p-p-p-q]-model. Thereby, for three times a simulation with a p-value and once with a q-value is assumed. Hence, these parameters are estimated and displayed. Moreover, functions for simulating random Sierpinski-Carpets with constant and variable probabilities are included. For more details on the method please see Hermann et al. (2015) <doi:10.1002/sim.6497>.
To help you access, transform, analyze, and visualize ForestGEO data, we developed a collection of R packages (<https://forestgeo.github.io/fgeo/>). This package, in particular, helps you to plot ForestGEO data. To learn more about ForestGEO visit <https://forestgeo.si.edu/>.
This package provides a shiny application based on FossilSim'. Used for simulating tree, taxonomic and fossil data under mechanistic models of speciation, preservation and sampling.
An easy way to conduct flexible scan. Monte-Carlo method is used to test the spatial clusters given the cases, population, and shapefile. A table with formal style and a map with clusters are included in the result report. The method can be referenced at: Toshiro Tango and Kunihiko Takahashi (2005) <doi:10.1186/1476-072X-4-11>.
Shed light on black box machine learning models by the help of model performance, variable importance, global surrogate models, ICE profiles, partial dependence (Friedman J. H. (2001) <doi:10.1214/aos/1013203451>), accumulated local effects (Apley D. W. (2016) <doi:10.48550/arXiv.1612.08468>), further effects plots, interaction strength, and variable contribution breakdown (Gosiewska and Biecek (2019) <doi:10.48550/arXiv.1903.11420>). All tools are implemented to work with case weights and allow for stratified analysis. Furthermore, multiple flashlights can be combined and analyzed together.
This package provides high-level access to neuroimaging data from standard software packages like FreeSurfer <http://freesurfer.net/> on the level of subjects and groups. Load morphometry data, surfaces and brain parcellations based on atlases. Mask data using labels, load data for specific atlas regions only, and visualize data and statistical results directly in R'.
This package provides implementation of statistical methods for random objects lying in various metric spaces, which are not necessarily linear spaces. The core of this package is Fréchet regression for random objects with Euclidean predictors, which allows one to perform regression analysis for non-Euclidean responses under some mild conditions. Examples include distributions in 2-Wasserstein space, covariance matrices endowed with power metric (with Frobenius metric as a special case), Cholesky and log-Cholesky metrics, spherical data. References: Petersen, A., & Müller, H.-G. (2019) <doi:10.1214/17-AOS1624>.