Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Compares how well different models estimate a quantity of interest (the "focus") so that different models may be preferred for different purposes. Comparisons within any class of models fitted by maximum likelihood are supported, with shortcuts for commonly-used classes such as generalised linear models and parametric survival models. The methods originate from Claeskens and Hjort (2003) <doi:10.1198/016214503000000819> and Claeskens and Hjort (2008, ISBN:9780521852258).
Implementation of two sample comparison procedures based on median-based statistical tests for functional data, introduced in Smida et al (2022) <doi:10.1080/10485252.2022.2064997>. Other competitive state-of-the-art approaches proposed by Chakraborty and Chaudhuri (2015) <doi:10.1093/biomet/asu072>, Horvath et al (2013) <doi:10.1111/j.1467-9868.2012.01032.x> or Cuevas et al (2004) <doi:10.1016/j.csda.2003.10.021> are also included in the package, as well as procedures to run test result comparisons and power analysis using simulations.
This package provides a comprehensive set of datasets and tools for causal inference research. The package includes data from clinical trials, cancer studies, epidemiological surveys, environmental exposures, and health-related observational studies. Designed to facilitate causal analysis, risk assessment, and advanced statistical modeling, it leverages datasets from packages such as causalOT', survival', causalPAF', evident', melt', and sanon'. The package is inspired by the foundational work of Pearl (2009) <doi:10.1017/CBO9780511803161> on causal inference frameworks.
Statistical tool set for population genetics. The package provides following functions: 1) estimators of genetic differentiation (FST), 2) regression analysis of environmental effects on genetic differentiation using generalized least squares (GLS) method, 3) interfaces to read and manipulate GENEPOP format data files). For more information, see Kitada, Nakamichi and Kishino (2020) <doi:10.1101/2020.01.30.927186>.
Generating fractional binomial random variables and computing density, cumulative distribution, and quantiles of fractional binomial distributions. (Lee, J. (2023) <arXiv:2209.01516>.).
Extracts features from biological sequences. It contains most features which are presented in related work and also includes features which have never been introduced before. It extracts numerous features from nucleotide and peptide sequences. Each feature converts the input sequences to discrete numbers in order to use them as predictors in machine learning models. There are many features and information which are hidden inside a sequence. Utilizing the package, users can convert biological sequences to discrete models based on chosen properties. References: iLearn Z. Chen et al. (2019) <DOI:10.1093/bib/bbz041>. iFeature Z. Chen et al. (2018) <DOI:10.1093/bioinformatics/bty140>. <https://CRAN.R-project.org/package=rDNAse>. PseKRAAC Y. Zuo et al. PseKRAAC: a flexible web server for generating pseudo K-tuple reduced amino acids composition (2017) <DOI:10.1093/bioinformatics/btw564>. iDNA6mA-PseKNC P. Feng et al. iDNA6mA-PseKNC: Identifying DNA N6-methyladenosine sites by incorporating nucleotide physicochemical properties into PseKNC (2019) <DOI:10.1016/j.ygeno.2018.01.005>. I. Dubchak et al. Prediction of protein folding class using global description of amino acid sequence (1995) <DOI:10.1073/pnas.92.19.8700>. W. Chen et al. Identification and analysis of the N6-methyladenosine in the Saccharomyces cerevisiae transcriptome (2015) <DOI:10.1038/srep13859>.
This package implements fast change point detection algorithm based on the paper "Sequential Gradient Descent and Quasi-Newton's Method for Change-Point Analysis" by Xianyang Zhang, Trisha Dawn <https://proceedings.mlr.press/v206/zhang23b.html>. The algorithm is based on dynamic programming with pruning and sequential gradient descent. It is able to detect change points a magnitude faster than the vanilla Pruned Exact Linear Time(PELT). The package includes examples of linear regression, logistic regression, Poisson regression, penalized linear regression data, and whole lot more examples with custom cost function in case the user wants to use their own cost function.
Access data from the Federal Register API <https://www.federalregister.gov/developers/api/v1>.
This package provides a collection of features, decomposition methods, statistical summaries and graphics functions for the analysing tidy time series data. The package name feasts is an acronym comprising of its key features: Feature Extraction And Statistics for Time Series.
This package provides functions to switch the BLAS'/'LAPACK optimized backend and change the number of threads without leaving the R session, which needs to be linked against the FlexiBLAS wrapper library <https://www.mpi-magdeburg.mpg.de/projects/flexiblas>.
Used for the design and analysis of a 2x2 factorial trial for a time-to-event endpoint. It performs power calculations and significance testing as well as providing estimates of the relevant hazard ratios and the corresponding 95% confidence intervals. Important reference papers include Slud EV. (1994) <https://www.ncbi.nlm.nih.gov/pubmed/8086609> Lin DY, Gong J, Gallo P, Bunn PH, Couper D. (2016) <DOI:10.1111/biom.12507> Leifer ES, Troendle JF, Kolecki A, Follmann DA. (2020) <https://github.com/EricSLeifer/factorial2x2/blob/master/Leifer%20et%20al.%20paper.pdf>.
This package provides a collection of functions to optimize portfolios and to analyze them from different points of view.
Tests for Kaiser-Meyer-Olkin (KMO) and communalities in a dataset. It provides a final sample by removing variables in a iterable manner while keeping account of the variables that were removed in each step. It follows the best practices and assumptions according to Hair, Black, Babin & Anderson (2018, ISBN:9781473756540).
The lipid scrambling activity of protein extracts and purified scramblases is often determined using a fluorescence-based assay involving many manual steps. flippant offers an integrated solution for the analysis and publication-grade graphical presentation of dithionite scramblase assays, as well as a platform for review, dissemination and extension of the strategies it employs. The package's name derives from a play on the fact that lipid scrambling is also sometimes referred to as flipping'. The package is originally published as Cotton, R.J., Ploier, B., Goren, M.A., Menon, A.K., and Graumann, J. (2017). "flippantâ An R package for the automated analysis of fluorescence-based scramblase assays." BMC Bioinformatics 18, 146. <DOI:10.1186/s12859-017-1542-y>.
Generate decision tables and simulate operating characteristics for phase I dose-finding designs to enable objective comparison across methods. Supported designs include the traditional 3+3, Bayesian Optimal Interval (BOIN) (Liu and Yuan (2015) <doi:10.1158/1078-0432.CCR-14-1526>), modified Toxicity Probability Interval-2 (mTPI-2) (Guo et al. (2017) <doi:10.1002/sim.7185>), interval 3+3 (i3+3) (Liu et al. (2020) <doi:10.1177/0962280220939123>), and Generalized 3+3 (G3). Provides visualization tools for comparing decision rules and operating characteristics across multiple designs simultaneously.
Fire behavior prediction models, including the Scott & Reinhardt's (2001) Rothermel Wildland Fire Modelling System <DOI:10.2737/RMRS-RP-29> and Alexander et al.'s (2006) Crown Fire Initiation & Spread model <DOI:10.1016/j.foreco.2006.08.174>. Also contains sample datasets, estimation of fire behavior prediction model inputs (e.g., fuel moisture, canopy characteristics, wind adjustment factor), results visualization, and methods to estimate fire weather hazard.
This package provides a tool to explore wide data sets, by detecting, ranking and plotting groups of statistically dependent columns.
This package implements the fused lasso additive model as proposed in Petersen, A., Witten, D., and Simon, N. (2016). Fused Lasso Additive Model. Journal of Computational and Graphical Statistics, 25(4): 1005-1025.
This package provides a simplified interface to the Central Data Repository REST API service made available by the United States Federal Financial Institutions Examination Council ('FFIEC'). Contains functions to retrieve reports of Condition and Income (Call Reports) and Uniform Bank Performance Reports ('UBPR') in list or tidy data frame format for most FDIC insured institutions. See <https://cdr.ffiec.gov/public/Files/SIS611_-_Retrieve_Public_Data_via_Web_Service.pdf> for the official REST API documentation published by the FFIEC'.
Input has to be in the form of vectors of lower class limits and upper class limits and frequencies; the output will give a cumulative frequency distribution table with cumulative frequency plot.
Estimation of a dynamic lognormal - Generalized Pareto mixture via the Approximate Maximum Likelihood and the Cross-Entropy methods. See Bee, M. (2023) <doi:10.1016/j.csda.2023.107764>.
This package implements fractional differencing with Autoregressive Moving Average models to analyse long-memory time series data. Traditional ARIMA models typically use integer values for differencing, which are suitable for time series with short memory or anti-persistent behaviour. In contrast, the Fractional ARIMA model allows fractional differencing, enabling it to effectively capture long memory characteristics in time series data. The âfracARMAâ package is user-friendly and allows users to manually input the fractional differencing parameter, which can be obtained using various estimators such as the GPH estimator, Sperio method, or Wavelet method and many. Additionally, the package enables users to directly feed the time series data, AR order, MA order, fractional differencing parameter, and the proportion of training data as a split ratio, all in a single command. The package is based on the reference from the paper of Irshad and others (2024, <doi:10.22271/maths.2024.v9.i6b.1906>).
This package provides a set of methods to simulate from and fit computational models of attentional selectivity. The package implements the dual-stage two-phase (DSTP) model of Hübner et al. (2010) <doi:10.1037/a0019471>, and the shrinking spotlight (SSP) model of White et al. (2011) <doi:10.1016/j.cogpsych.2011.08.001>.
Aids in analysing data from a food frequency questionnaire known as the Harvard Service Food Frequency Questionnaire (HSFFQ). Functions from this package use answers from the HSFFQ to generate estimates of daily consumed micronutrients, calories, macronutrients on an individual level. The package also calculates food quotients on individual and group levels. Foodquotient calculation is an often tedious step in the calculation of total human energy expenditure (TEE) using the doubly labeled water method, which is the gold standard for measuring TEE.