Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides functions to access and retrieve metadata from the Finna API <https://api.finna.fi/>, which aggregates content from Finnish archives, libraries, and museums.
The FLEX method, developed by Yoon and Choi (2013) <doi:10.1007/978-3-642-33042-1_21>, performs least squares estimation for fuzzy predictors and outcomes, generating crisp regression coefficients by minimizing the distance between observed and predicted outcomes. It also provides functions for fuzzifying data and inference tasks, including significance testing, fit indices, and confidence interval estimation.
This package provides implementation of statistical methods for random objects lying in various metric spaces, which are not necessarily linear spaces. The core of this package is Fréchet regression for random objects with Euclidean predictors, which allows one to perform regression analysis for non-Euclidean responses under some mild conditions. Examples include distributions in 2-Wasserstein space, covariance matrices endowed with power metric (with Frobenius metric as a special case), Cholesky and log-Cholesky metrics, spherical data. References: Petersen, A., & Müller, H.-G. (2019) <doi:10.1214/17-AOS1624>.
This package provides a small subset of plots throughout the U.S. are sampled and assessed "on-the-ground" as forested or non-forested by the U.S. Department of Agriculture, Forest Service, Forest Inventory and Analysis (FIA) Program, but the FIA also has access to remotely sensed data for all land in the country. The forested package contains data frames intended for use in predictive modeling applications where the more easily-accessible remotely sensed data can be used to predict whether a plot is forested or non-forested. Currently, the package provides data for Washington and Georgia.
These functions were developed to support statistical analysis on functional covariance operators. The package contains functions to: - compute 2-Wasserstein distances between Gaussian Processes as in Masarotto, Panaretos & Zemel (2019) <doi:10.1007/s13171-018-0130-1>; - compute the Wasserstein barycenter (Frechet mean) as in Masarotto, Panaretos & Zemel (2019) <doi:10.1007/s13171-018-0130-1>; - perform analysis of variance testing procedures for functional covariances and tangent space principal component analysis of covariance operators as in Masarotto, Panaretos & Zemel (2022) <arXiv:2212.04797>. - perform a soft-clustering based on the Wasserstein distance where functional data are classified based on their covariance structure as in Masarotto & Masarotto (2023) <doi:10.1111/sjos.12692>.
Randomized and balanced allocation of units to treatment groups using the Finite Selection Model (FSM). The FSM was originally proposed and developed at the RAND corporation by Carl Morris to enhance the experimental design for the now famous Health Insurance Experiment. See Morris (1979) <doi:10.1016/0304-4076(79)90053-8> for details on the original version of the FSM.
Read and write Frictionless Data Packages. A Data Package (<https://specs.frictionlessdata.io/data-package/>) is a simple container format and standard to describe and package a collection of (tabular) data. It is typically used to publish FAIR (<https://www.go-fair.org/fair-principles/>) and open datasets.
An implementation of the methodologies described in Xi Liu, Afshin A. Divani, and Alexander Petersen (2022) <doi:10.1016/j.csda.2022.107421>, including truncated functional linear and truncated functional logistic regression models.
This package provides a simplified interface to the Central Data Repository REST API service made available by the United States Federal Financial Institutions Examination Council ('FFIEC'). Contains functions to retrieve reports of Condition and Income (Call Reports) and Uniform Bank Performance Reports ('UBPR') in list or tidy data frame format for most FDIC insured institutions. See <https://cdr.ffiec.gov/public/Files/SIS611_-_Retrieve_Public_Data_via_Web_Service.pdf> for the official REST API documentation published by the FFIEC'.
Distribution functions and test for over-representation of short distances in the Liland distribution. Simulation functions are included for comparison.
Implementation to perform forecasting of locally stationary wavelet processes by examining the local second order structure of the time series.
Generate SPSS'/'SAS styled frequency tables. Frequency tables are generated with variable and value label attributes where applicable with optional html output to quickly examine datasets.
This package provides tools for analyzing remote sensing forest data, including functions for detecting treetops from canopy models, outlining tree crowns, and calculating textural metrics.
The heterogeneous treatment effect estimation procedure proposed by Imai and Ratkovic (2013)<DOI: 10.1214/12-AOAS593>. The proposed method is applicable, for example, when selecting a small number of most (or least) efficacious treatments from a large number of alternative treatments as well as when identifying subsets of the population who benefit (or are harmed by) a treatment of interest. The method adapts the Support Vector Machine classifier by placing separate LASSO constraints over the pre-treatment parameters and causal heterogeneity parameters of interest. This allows for the qualitative distinction between causal and other parameters, thereby making the variable selection suitable for the exploration of causal heterogeneity. The package also contains a class of functions, CausalANOVA, which estimates the average marginal interaction effects (AMIEs) by a regularized ANOVA as proposed by Egami and Imai (2019). It contains a variety of regularization techniques to facilitate analysis of large factorial experiments.
FS-DAM performs feature extraction through latent variables identification. Implementation is based on autoencoders with monotonicity and orthogonality constraints.
Implementations of the k-means, hierarchical agglomerative and DBSCAN clustering methods for functional data which allows for jointly aligning and clustering curves. It supports functional data defined on one-dimensional domains but possibly evaluating in multivariate codomains. It supports functional data defined in arrays but also via the fd and funData classes for functional data defined in the fda and funData packages respectively. It currently supports shift, dilation and affine warping functions for functional data defined on the real line and uses the SRVF framework to handle boundary-preserving warping for functional data defined on a specific interval. Main reference for the k-means algorithm: Sangalli L.M., Secchi P., Vantini S., Vitelli V. (2010) "k-mean alignment for curve clustering" <doi:10.1016/j.csda.2009.12.008>. Main reference for the SRVF framework: Tucker, J. D., Wu, W., & Srivastava, A. (2013) "Generative models for functional data using phase and amplitude separation" <doi:10.1016/j.csda.2012.12.001>.
Perform robust inference based on applying Fast and Robust Bootstrap on robust estimators (Van Aelst and Willems (2013) <doi:10.18637/jss.v053.i03>). This method constitutes an alternative to ordinary bootstrap or asymptotic inference. procedures when using robust estimators such as S-, MM- or GS-estimators. The available methods are multivariate regression, principal component analysis and one-sample and two-sample Hotelling tests. It provides both the robust point estimates and uncertainty measures based on the fast and robust bootstrap.
The lipid scrambling activity of protein extracts and purified scramblases is often determined using a fluorescence-based assay involving many manual steps. flippant offers an integrated solution for the analysis and publication-grade graphical presentation of dithionite scramblase assays, as well as a platform for review, dissemination and extension of the strategies it employs. The package's name derives from a play on the fact that lipid scrambling is also sometimes referred to as flipping'. The package is originally published as Cotton, R.J., Ploier, B., Goren, M.A., Menon, A.K., and Graumann, J. (2017). "flippantâ An R package for the automated analysis of fluorescence-based scramblase assays." BMC Bioinformatics 18, 146. <DOI:10.1186/s12859-017-1542-y>.
The free group in R; juxtaposition is represented by a plus. Includes inversion, multiplication by a scalar, group-theoretic power operation, and Tietze forms. To cite the package in publications please use Hankin (2022) <doi:10.48550/ARXIV.2212.05883>.
This package provides tools for estimating causal effects in panel data using counterfactual methods, as well as other modern DID estimators. It is designed for causal panel analysis with binary treatments under the parallel trends assumption. The package supports scenarios where treatments can switch on and off and allows for limited carryover effects. It includes several imputation estimators, such as Gsynth (Xu 2017), linear factor models, and the matrix completion method. Detailed methodology is described in Liu, Wang, and Xu (2024) <doi:10.48550/arXiv.2107.00856> and Chiu et al. (2025) <doi:10.48550/arXiv.2309.15983>. Optionally integrates with the "HonestDiDFEct" package for sensitivity analyses compatible with imputation estimators. "HonestDiDFEct" is not on CRAN but can be obtained from <https://github.com/lzy318/HonestDiDFEct>.
One can easily draw the membership function of f(x,y) by package FuzzyNumbers.Ext.2 in which f(.,.) is supposed monotone and x and y are two fuzzy numbers. This work is possible using function f2apply() which is an extension of function fapply() from Package FuzzyNumbers for two-variable monotone functions. Moreover, this package has the ability of computing the core, support and alpha-cuts of the fuzzy-valued final result.
This package implements the Fourier cumulative sum (CUSUM) cointegration test for detecting cointegration relationships in time series data with structural breaks. The test uses Fourier approximations to capture smooth structural changes and CUSUM statistics to test for cointegration stability. Based on methodology described in Zaghdoudi (2025) <doi:10.46557/001c.144076>. The corrected Akaike Information Criterion (AICc) is used for optimal frequency selection.
Calculate the final size of a susceptible-infectious-recovered epidemic in a population with demographic variation in contact patterns and susceptibility to disease, as discussed in Miller (2012) <doi:10.1007/s11538-012-9749-6>.
In order to achieve accurate estimation without sparsity assumption on the precision matrix, element-wise inference on the precision matrix, and joint estimation of multiple Gaussian graphical models, a novel method is proposed and efficient algorithm is implemented. FLAG() is the main function given a data matrix, and FlagOneEdge() will be used when one pair of random variables are interested where their indices should be given. Flexible and Accurate Methods for Estimation and Inference of Gaussian Graphical Models with Applications, see Qian Y (2023) <doi:10.14711/thesis-991013223054603412>, Qian Y, Hu X, Yang C (2023) <doi:10.48550/arXiv.2306.17584>.