Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Fit occupancy models in Stan via brms'. The full variety of brms formula-based effects structures are available to use in multiple classes of occupancy model, including single-season models, models with data augmentation for never-observed species, dynamic (multiseason) models with explicit colonization and extinction processes, and dynamic models with autologistic occupancy dynamics. Formulas can be specified for all relevant distributional terms, including detection and one or more of occupancy, colonization, extinction, and autologistic depending on the model type. Several important forms of model post-processing are provided. References: Bürkner (2017) <doi:10.18637/jss.v080.i01>; Carpenter et al. (2017) <doi:10.18637/jss.v076.i01>; Socolar & Mills (2023) <doi:10.1101/2023.10.26.564080>.
This package provides a lightweight suite of functions for retrieving information about 5-digit or 2-digit US FIPS codes.
This package provides a set of functions that facilitate basic data manipulation and cleaning for statistical analysis including functions for finding and fixing duplicate rows and columns, missing values, outliers, and special characters in column and row names and functions for checking data consistency, distribution, quality, reliability, and structure.
This package provides hardware-accelerated tools for performing rerandomization and randomization testing in experimental research. Using a JAX backend, the package enables exact rerandomization inference even for large experiments with hundreds of billions of possible randomizations. Key functionalities include generating pools of acceptable rerandomizations based on covariate balance, conducting exact randomization tests, and performing pre-analysis evaluations to determine optimal rerandomization acceptance thresholds. The package supports various hardware acceleration frameworks including CPU', CUDA', and METAL', making it versatile across accelerated computing environments. This allows researchers to efficiently implement stringent rerandomization designs and conduct valid inference even with large sample sizes. The package is partly based on Jerzak and Goldstein (2023) <doi:10.48550/arXiv.2310.00861>.
Perform variable selection in settings with possibly missing data based on extrinsic (algorithm-specific) and intrinsic (population-level) variable importance. Uses a Super Learner ensemble to estimate the underlying prediction functions that give rise to estimates of variable importance. For more information about the methods, please see Williamson and Huang (2024) <doi:10.1515/ijb-2023-0059>.
Modelizations and previsions functions for Functional AutoRegressive processes using nonparametric methods: functional kernel, estimation of the covariance operator in a subspace, ...
This package provides tools for downloading and analyzing floristic quality assessment data. See Freyman et al. (2015) <doi:10.1111/2041-210X.12491> for more information about floristic quality assessment and the associated database.
This package provides a fast method for approximating time-varying infectious disease transmission rates from disease incidence time series and other data, based on a discrete time approximation of an SEIR model, as analyzed in Jagan et al. (2020) <doi:10.1371/journal.pcbi.1008124>.
TrainFastImputation() uses training data to describe a multivariate normal distribution that the data approximates or can be transformed into approximating and stores this information as an object of class FastImputationPatterns'. FastImputation() function uses this FastImputationPatterns object to impute (make a good guess at) missing data in a single line or a whole data frame of data. This approximates the process used by Amelia <https://gking.harvard.edu/amelia> but is much faster when filling in values for a single line of data.
This package provides a mutual information estimator based on k-nearest neighbor method proposed by A. Kraskov, et al. (2004) <doi:10.1103/PhysRevE.69.066138> to measure general dependence and the time complexity for our estimator is only squared to the sample size, which is faster than other statistics. Besides, an implementation of mutual information based independence test is provided for analyzing multivariate data in Euclidean space (T B. Berrett, et al. (2019) <doi:10.1093/biomet/asz024>); furthermore, we extend it to tackle datasets in metric spaces.
Lognormal models have broad applications in various research areas such as economics, actuarial science, biology, environmental science and psychology. The estimation problem in lognormal models has been extensively studied. This R package fuel implements thirty-nine existing and newly proposed estimators. See Zhang, F., and Gou, J. (2020), A unified framework for estimation in lognormal models, Technical report.
Enables the construction of flexible urban delineations that can be tailored to specific applications or research questions, see Van Migerode et al. (2024) <DOI:10.1177/23998083241262545> and Van Migerode et al. (2025) <DOI:10.5281/zenodo.15173220>. Originally developed to flexibly reconstruct the Degree of Urbanisation classification of cities, towns and rural areas developed by Dijkstra et al. (2021) <DOI:10.1016/j.jue.2020.103312>. Now it also support a broader range of delineation approaches, using multiple datasets â including population, built-up area, and night-time light grids â and different thresholding methods.
Get spatial vector data from the Atlas du Patrimoine (<http://atlas.patrimoines.culture.fr/atlas/trunk/>), the official national platform of the French Ministry of Culture, and facilitate its use within R geospatial workflows. The package provides functions to list available heritage datasets, query and retrieve heritage data using spatial queries based on user-provided sf objects, perform spatial filtering operations, and return results as sf objects suitable for spatial analysis, mapping, and integration into heritage management and landscape studies.
This package provides an opinionated project scaffold for R and Quarto analysis work, enforcing a consistent directory layout with scripts in R/, .qmd files in pages/, and assets in www/. The primary entry point, init(), downloads the latest template from a companion GitHub repository so that project structure evolves independently of package releases. Supports persistent author metadata and Quarto brand configuration that carry across projects automatically.
Processes data from The Social Networks and Fertility Survey, downloaded from <https://dataarchive.lissdata.nl>, including correcting respondent errors and transforming network data into network objects to facilitate analyses and visualisation.
The goal of forstringr is to enable complex string manipulation in R especially to those more familiar with LEFT(), RIGHT(), and MID() functions in Microsoft Excel. The package combines the power of stringr with other manipulation packages such as dplyr and tidyr'.
Collect your data on digital marketing campaigns from Salesforce using the Windsor.ai API <https://windsor.ai/api-fields/>.
The purpose of this package is to tests whether a given moment of the distribution of a given sample is finite or not. For heavy-tailed distributions with tail exponent b, only moments of order smaller than b are finite. Tail exponent and heavy- tailedness are notoriously difficult to ascertain. But the finiteness of moments (including fractional moments) can be tested directly. This package does that following the test suggested by Trapani (2016) <doi:10.1016/j.jeconom.2015.08.006>.
Data-driven fMRI denoising with projection scrubbing (Pham et al (2022) <doi:10.1016/j.neuroimage.2023.119972>). Also includes routines for DVARS (Derivatives VARianceS) (Afyouni and Nichols (2018) <doi:10.1016/j.neuroimage.2017.12.098>), motion scrubbing (Power et al (2012) <doi:10.1016/j.neuroimage.2011.10.018>), aCompCor (anatomical Components Correction) (Muschelli et al (2014) <doi:10.1016/j.neuroimage.2014.03.028>), detrending, and nuisance regression. Projection scrubbing is also applicable to other outlier detection tasks involving high-dimensional data.
Extends data.table join functionality, lets it work with any data frame class, and provides a familiar x'/'y'-style interface, enabling broad use across R. Offers NA-safe matching by default, on-the-fly column selection, multiple match-handling on both sides, x or y row order, and a row origin indicator. Performs inner, left, right, full, semi- and anti-joins with equality and inequality conditions, plus cross joins. Specific support for data.table', (grouped) tibble, and sf'/'sfc objects and their attributes; returns a plain data frame otherwise. Avoids data-copying of inputs and outputs. Allows displaying the data.table code instead of (or as well as) executing it.
This package provides a full set of fast data manipulation tools with a tidy front-end and a fast back-end using collapse and cheapr'.
This package provides a convenient and user-friendly interface to interact with the Firebase Authentication REST API': <https://firebase.google.com/docs/reference/rest/auth>. It enables R developers to integrate Firebase Authentication services seamlessly into their projects, allowing for user authentication, account management, and other authentication-related tasks.
Handy functions and data to support the course book Empirical Research in Accounting: Tools and Methods (1st ed.). Chapman and Hall/CRC. <doi:10.1201/9781003456230> and <https://iangow.github.io/far_book/>.
Implementation of the Future API <doi:10.32614/RJ-2021-048> on top of the mirai package <doi:10.5281/zenodo.7912722>. By using this package, you get to take advantage of the benefits of mirai plus everything else that future and the Futureverse adds on top of it. It allows you to process futures, as defined by the future package, in parallel out of the box, on your local machine or across remote machines. Contrary to back-ends relying on the parallel package (e.g. multisession') and socket connections, mirai_cluster and mirai_multisession', provided here, can run more than 125 parallel R processes. As a reminder, regardless which future backend is used by the user, the code does not have to change, it gives identical results, and behaves exactly the same.