Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Computes the power and sample size (PASS) required to test for the difference in the mean function between two groups under a repeatedly measured longitudinal or sparse functional design. See the manuscript by Koner and Luo (2023) <https://salilkoner.github.io/assets/PASS_manuscript.pdf> for details of the PASS formula and computational details. The details of the testing procedure for univariate and multivariate response are presented in Wang (2021) <doi:10.1214/21-EJS1802> and Koner and Luo (2023) <arXiv:2302.05612> respectively.
Recent technological advances have enable the simultaneous collection of multi-omics data i.e., different types or modalities of molecular data, presenting challenges for integrative prediction modeling due to the heterogeneous, high-dimensional nature and possible missing modalities of some individuals. We introduce this package for late integrative prediction modeling, enabling modality-specific variable selection and prediction modeling, followed by the aggregation of the modality-specific predictions to train a final meta-model. This package facilitates conducting late integration predictive modeling in a systematic, structured, and reproducible way.
Rcpp (free of Java'/'Weka') implementation of FSelector entropy-based feature selection algorithms based on an MDL discretization (Fayyad U. M., Irani K. B.: Multi-Interval Discretization of Continuous-Valued Attributes for Classification Learning. In 13'th International Joint Conference on Uncertainly in Artificial Intelligence (IJCAI93), pages 1022-1029, Chambery, France, 1993.) <https://www.ijcai.org/Proceedings/93-2/Papers/022.pdf> with a sparse matrix support.
Fast, numerically robust computation of weighted moments via Rcpp'. Supports computation on vectors and matrices, and Monoidal append of moments. Moments and cumulants over running fixed length windows can be computed, as well as over time-based windows. Moment computations are via a generalization of Welford's method, as described by Bennett et. (2009) <doi:10.1109/CLUSTR.2009.5289161>.
Three methods are implemented in R to facilitate the aggregations of flags in official statistics. From the underlying flags the highest in the hierarchy, the most frequent, or with the highest total weight is propagated to the flag(s) for EU or other aggregates. Below there are some reference documents for the topic: <https://sdmx.org/wp-content/uploads/CL_OBS_STATUS_v2_1.docx>, <https://sdmx.org/wp-content/uploads/CL_CONF_STATUS_1_2_2018.docx>, <http://ec.europa.eu/eurostat/data/database/information>, <http://www.oecd.org/sdd/33869551.pdf>, <https://sdmx.org/wp-content/uploads/CL_OBS_STATUS_implementation_20-10-2014.pdf>.
Generate decision tables and simulate operating characteristics for phase I dose-finding designs to enable objective comparison across methods. Supported designs include the traditional 3+3, Bayesian Optimal Interval (BOIN) (Liu and Yuan (2015) <doi:10.1158/1078-0432.CCR-14-1526>), modified Toxicity Probability Interval-2 (mTPI-2) (Guo et al. (2017) <doi:10.1002/sim.7185>), interval 3+3 (i3+3) (Liu et al. (2020) <doi:10.1177/0962280220939123>), and Generalized 3+3 (G3). Provides visualization tools for comparing decision rules and operating characteristics across multiple designs simultaneously.
This package provides raw and curated data on the codes, classification and conservation status of freshwater fishes in British Columbia. Marine fishes will be added in a future release.
This package provides tools for detecting and summarize influential cases that can affect exploratory and confirmatory factor analysis models as well as structural equation models more generally (Chalmers, 2015, <doi:10.1177/0146621615597894>; Flora, D. B., LaBrish, C. & Chalmers, R. P., 2012, <doi:10.3389/fpsyg.2012.00055>).
Developed by CDC/ATSDR (Centers for Disease Control and Prevention/ Agency for Toxic Substances and Disease Registry), Social Vulnerability Index (SVI) serves as a tool to assess the resilience of communities by taking into account socioeconomic and demographic factors. Provided with year(s), region(s) and a geographic level of interest, findSVI retrieves required variables from US census data and calculates SVI for communities in the specified area based on CDC/ATSDR SVI documentation. Reference for the calculation methods: Flanagan BE, Gregory EW, Hallisey EJ, Heitgerd JL, Lewis B (2011) <doi:10.2202/1547-7355.1792>.
This package provides functions for converting decimals to a matrix of numerators and denominators or a character vector of fractions. Supports mixed or improper fractions, finding common denominators for vectors of fractions, limiting denominators to powers of ten, and limiting denominators to a maximum value. Also includes helper functions for finding the least common multiple and greatest common divisor for a vector of integers. Implemented using C++ for maximum speed.
This package provides a parametrization framework for finite mixture distribution using S4 objects. Density, cumulative density, quantile and simulation functions are defined. Currently normal, Tukey g-&-h, skew-normal and skew-t distributions are well tested. The gamma, negative binomial distributions are being tested.
This package provides a flexible set of tools for matching two un-linked data sets. fedmatch allows for three ways to match data: exact matches, fuzzy matches, and multi-variable matches. It also allows an easy combination of these three matches via the tier matching function.
Does fuzzy tests and confidence intervals (following Geyer and Meeden, Statistical Science, 2005, <doi:10.1214/088342305000000340>) for sign test and Wilcoxon signed rank and rank sum tests.
This package provides an implementation of concurrent or varying coefficient regression methods for functional data. The implementations are done for both dense and sparsely observed functional data. Pointwise confidence bands can be constructed for each case. Further, the influence of past predictor values are modeled by a smooth history index function, while the effects on the response are described by smooth varying coefficient functions, which are very useful in analyzing real data such as COVID data. References: Yao, F., Müller, H.G., Wang, J.L. (2005) <doi:10.1214/009053605000000660>. Sentürk, D., Müller, H.G. (2010) <doi:10.1198/jasa.2010.tm09228>.
Computes different multidimensional FD indices. Implements a distance-based framework to measure FD that allows any number and type of functional traits, and can also consider species relative abundances. Also contains other useful tools for functional ecology.
Clustering for categorical and mixed-type of data, to preventing classification biases due to race, gender or others sensitive attributes. This algorithm is an extension of the methodology proposed by "Santos & Heras (2020) <doi:10.28945/4643>".
This package provides a computationally efficient and statistically rigorous fast Kernel Machine method for multi-kernel analysis. The approach is based on a low-rank approximation to the nuisance effect kernel matrices. The algorithm is applicable to continuous, binary, and survival traits and is implemented using the existing single-kernel analysis software SKAT and coxKM'. coxKM can be obtained from <https://github.com/lin-lab/coxKM>.
Several generalized / directional Fixed Sequence Multiple Testing Procedures (FSMTPs) are developed for testing a sequence of pre-ordered hypotheses while controlling the FWER, FDR and Directional Error (mdFWER). All three FWER controlling generalized FSMTPs are designed under arbitrary dependence, which allow any number of acceptances. Two FDR controlling generalized FSMTPs are respectively designed under arbitrary dependence and independence, which allow more but a given number of acceptances. Two mdFWER controlling directional FSMTPs are respectively designed under arbitrary dependence and independence, which can also make directional decisions based on the signs of the test statistics. The main functions for each proposed generalized / directional FSMTPs are designed to calculate adjusted p-values and critical values, respectively. For users convenience, the functions also provide the output option for printing decision rules.
This package creates dynamic grid layouts of images that can be included in Shiny applications and R markdown documents.
An interface to the fastText library <https://github.com/facebookresearch/fastText>. The package can be used for text classification and to learn word vectors. An example how to use fastTextR can be found in the README file.
This package implements a Fellegi-Sunter probabilistic record linkage model that allows for missing data and the inclusion of auxiliary information. This includes functionalities to conduct a merge of two datasets under the Fellegi-Sunter model using the Expectation-Maximization algorithm. In addition, tools for preparing, adjusting, and summarizing data merges are included. The package implements methods described in Enamorado, Fifield, and Imai (2019) Using a Probabilistic Model to Assist Merging of Large-scale Administrative Records <doi:10.1017/S0003055418000783> and is available at <https://imai.fas.harvard.edu/research/linkage.html>.
Package for time value of money calculation, time series analysis and computational finance.
This package provides a versatile package that provides implementation of various methods of Functional Data Analysis (FDA) and Empirical Dynamics. The core of this package is Functional Principal Component Analysis (FPCA), a key technique for functional data analysis, for sparsely or densely sampled random trajectories and time courses, via the Principal Analysis by Conditional Estimation (PACE) algorithm. This core algorithm yields covariance and mean functions, eigenfunctions and principal component (scores), for both functional data and derivatives, for both dense (functional) and sparse (longitudinal) sampling designs. For sparse designs, it provides fitted continuous trajectories with confidence bands, even for subjects with very few longitudinal observations. PACE is a viable and flexible alternative to random effects modeling of longitudinal data. There is also a Matlab version (PACE) that contains some methods not available on fdapace and vice versa. Updates to fdapace were supported by grants from NIH Echo and NSF DMS-1712864 and DMS-2014626. Please cite our package if you use it (You may run the command citation("fdapace") to get the citation format and bibtex entry). References: Wang, J.L., Chiou, J., Müller, H.G. (2016) <doi:10.1146/annurev-statistics-041715-033624>; Chen, K., Zhang, X., Petersen, A., Müller, H.G. (2017) <doi:10.1007/s12561-015-9137-5>.
This package contains functions to simplify the use of data mining methods (classification, regression, clustering, etc.), for students and beginners in R programming. Various R packages are used and wrappers are built around the main functions, to standardize the use of data mining methods (input/output): it brings a certain loss of flexibility, but also a gain of simplicity. The package name came from the French "Fouille de Données en Master 2 Informatique Décisionnelle".