Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This is the first package allowing for the estimation, visualization and prediction of the most well-known football models: double Poisson, bivariate Poisson, Skellam, student_t, diagonal-inflated bivariate Poisson, and zero-inflated Skellam. It supports both maximum likelihood estimation (MLE, for static models only) and Bayesian inference. For Bayesian methods, it incorporates several techniques: MCMC sampling with Hamiltonian Monte Carlo, variational inference using either the Pathfinder algorithm or Automatic Differentiation Variational Inference (ADVI), and the Laplace approximation. The package compiles all the CmdStan models once during installation using the instantiate package. The model construction relies on the most well-known football references, such as Dixon and Coles (1997) <doi:10.1111/1467-9876.00065>, Karlis and Ntzoufras (2003) <doi:10.1111/1467-9884.00366> and Egidi, Pauli and Torelli (2018) <doi:10.1177/1471082X18798414>.
Calculation and plotting of instantaneous unavailabilities of basic events along with the top event of fault trees are issues important in reliability analysis of complex systems. Here, a fault tree is provided in terms of its minimal cut sets, along with reliability and maintainability distribution functions of the basic events. All the methods are derived from Horton (2002, ISBN: 3-936150-21-4), Niloofar and Lazarova-Molnar (2022).
Use R to access to the FMP Cloud API <https://fmpcloud.io/> and Financial Modeling Prep API <https://financialmodelingprep.com/developer/docs/>. Data available includes stock prices, market indexes, company fundamentals, 13F holdings data, and much more. A valid API token must be set to enable functions.
The complete scripts from the American sitcom Friends in tibble format. Use this package to practice data wrangling, text analysis and network analysis.
This package provides a simple method to select the best model or best subset of variables using different types of data (binary, Gaussian or Poisson) and applying it in different contexts (parametric or non-parametric).
Include assessing site classes based on the stand height growth and establishing a nonlinear mixed-effect biomass model under different site classes based on the whole stand model to achieve more accurate estimation of carbon sequestration. In particular, a carbon sequestration potential productivity calculation method based on the potential mean annual increment is proposed. This package is applicable to both natural forests and plantations. It can quantitatively assess standâ s potential productivity, realized productivity, and possible improvement under certain site, and can be used in many aspects such as site quality assessment, tree species suitability evaluation, and forest degradation evaluation. Reference: Lei X, Fu L, Li H, et al (2018) <doi:10.11707/j.1001-7488.20181213>. Fu L, Sharma R P, Zhu G, et al (2017) <doi:10.3390/f8040119>.
The Flow Analysis Summary Statistics Tool for R, fasstr', provides various functions to tidy and screen daily stream discharge data, calculate and visualize various summary statistics and metrics, and compute annual trending and volume frequency analyses. It features useful function arguments for filtering of and handling dates, customizing data and metrics, and the ability to pull daily data directly from the Water Survey of Canada hydrometric database (<https://collaboration.cmc.ec.gc.ca/cmc/hydrometrics/www/>).
Given vectors of family sizes and number of affecteds per family, calculates the risk of disease recurrence in an unaffected person, conditional on a family having at least k affected members. Methods also model heterogeneity of disease risk across families by fitting a mixture model, allowing for high and low risk families.
Allows user to obtain subsets of columns of data or vectors within a list. These subsets will match the original data in terms of average and variation, but have a consistent length of data per column. It is intended for use on automated data generation which may not always output the same N per replicate or sample.
Computes unidimensional and multidimensional Reciprocity and Inaccuracy indices. These indices are applicable to common heterostylous populations and to any other type of stylar dimorphic and trimorphic populations, such as in enantiostylous and three-dimensional heterostylous plants. Simón-Porcar, V., A. J. Muñoz-Pajares, J. Arroyo, and S. D. Johnson. (in press) "FlowerMate: multidimensional reciprocity and inaccuracy indices for style-polymorphic plant populations.".
Computes relative importance of main and interaction effects. Also, sum of the modified generalized weights is computed. Ibrahim et al. (2022) <doi:10.1134/S1064229322080051>.
Designing experimental plans that involve both discrete and continuous factors with general parametric statistical models using the ForLion algorithm and EW ForLion algorithm. The algorithms will search for locally optimal designs and EW optimal designs under the D-criterion. Reference: Huang, Y., Li, K., Mandal, A., & Yang, J., (2024)<doi:10.1007/s11222-024-10465-x>.
Work with configs with a source precedence. Either create own R6 instance or work with convenient functions at a package level.
Simulates age-at-onset traits associated with a segregating major gene in family data obtained from population-based, clinic-based, or multi-stage designs. Appropriate ascertainment correction is utilized to estimate age-dependent penetrance functions either parametrically from the fitted model or nonparametrically from the data. The Expectation and Maximization algorithm can infer missing genotypes and carrier probabilities estimated from family's genotype and phenotype information or from a fitted model. Plot functions include pedigrees of simulated families and predicted penetrance curves based on specified parameter values. For more information see Choi, Y.-H., Briollais, L., He, W. and Kopciuk, K. (2021) FamEvent: An R Package for Generating and Modeling Time-to-Event Data in Family Designs, Journal of Statistical Software 97 (7), 1-30.
Real capture frequencies will be fitted to various distributions which provide the basis of estimating population sizes, their standard error, and symmetric as well as asymmetric confidence intervalls.
The algorithm assigns rareness/ outlierness score to every sample in voluminous datasets. The algorithm makes multiple estimations of the proximity between a pair of samples, in low-dimensional spaces. To compute proximity, FiRE uses Sketching, a variant of locality sensitive hashing. For more details: Jindal, A., Gupta, P., Jayadeva and Sengupta, D., 2018. Discovery of rare cells from voluminous single cell expression data. Nature Communications, 9(1), p.4719. <doi:10.1038/s41467-018-07234-6>.
Proposes non-parametric estimates of the Fisher information measure and the Shannon entropy power. More theoretical and implementation details can be found in Guignard et al. <doi:10.3389/feart.2020.00255>. A python version of this work is available on github and PyPi ('FiShPy').
High-performance tools for transport modeling - network processing, route enumeration, and traffic assignment in R. The package implements the Path-Sized Logit model for traffic assignment - Ben-Akiva and Bierlaire (1999) <doi:10.1007/978-1-4615-5203-1_2> - an efficient route enumeration algorithm, and provides powerful utility functions for (multimodal) network generation, consolidation/contraction, and/or simplification. The user is expected to provide a transport network (either a graph or collection of linestrings) and an origin-destination (OD) matrix of trade/traffic flows. Maintained by transport consultants at CPCS (cpcs.ca).
This package provides a flexible permutation framework for making inference such as point estimation, confidence intervals or hypothesis testing, on any kind of data, be it univariate, multivariate, or more complex such as network-valued data, topological data, functional data or density-valued data.
Developed by CDC/ATSDR (Centers for Disease Control and Prevention/ Agency for Toxic Substances and Disease Registry), Social Vulnerability Index (SVI) serves as a tool to assess the resilience of communities by taking into account socioeconomic and demographic factors. Provided with year(s), region(s) and a geographic level of interest, findSVI retrieves required variables from US census data and calculates SVI for communities in the specified area based on CDC/ATSDR SVI documentation. Reference for the calculation methods: Flanagan BE, Gregory EW, Hallisey EJ, Heitgerd JL, Lewis B (2011) <doi:10.2202/1547-7355.1792>.
The aim is to take in data.frame inputs and utilises methods, such as recursive feature engineering, to enable the features to be removed. What this does differently from the other packages, is that it gives you the choice to remove the variables manually, or it automated this process. Feature selection is a concept in machine learning, and statistical pipelines, whereby unimportant, or less predictive variables are eliminated from the analysis, see Boughaci (2018) <doi:10.1007/s40595-018-0107-y>.
For functions that take and return vectors (or scalars), this package provides 8 algorithms for finding fixed point vectors (vectors for which the inputs and outputs to the function are the same vector). These algorithms include Anderson (1965) acceleration <doi:10.1145/321296.321305>, epsilon extrapolation methods (Wynn 1962 <doi:10.2307/2004051>) and minimal polynomial methods (Cabay and Jackson 1976 <doi:10.1137/0713060>).
Enables high-dimensional penalized regression across heterogeneous subgroups. Fusion penalties are used to share information about the linear parameters across subgroups. The underlying model is described in detail in Dondelinger and Mukherjee (2017) <arXiv:1611.00953>.
This package provides a set of function for clustering data observation with hybrid method Fuzzy ART and K-Means by Sengupta, Ghosh & Dan (2011) <doi:10.1080/0951192X.2011.602362>.