Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
The main goal of this package is to present various fuzzy statistical tools. It intends to provide an implementation of the theoretical and empirical approaches presented in the book entitled "The signed distance measure in fuzzy statistical analysis. Some theoretical, empirical and programming advances" <doi: 10.1007/978-3-030-76916-1>. For the theoretical approaches, see Berkachy R. and Donze L. (2019) <doi:10.1007/978-3-030-03368-2_1>. For the empirical approaches, see Berkachy R. and Donze L. (2016) <ISBN: 978-989-758-201-1>). Important (non-exhaustive) implementation highlights of this package are as follows: (1) a numerical procedure to estimate the fuzzy difference and the fuzzy square. (2) two numerical methods of fuzzification. (3) a function performing different possibilities of distances, including the signed distance and the generalized signed distance for instance with all its properties. (4) numerical estimations of fuzzy statistical measures such as the variance, the moment, etc. (5) two methods of estimation of the bootstrap distribution of the likelihood ratio in the fuzzy context. (6) an estimation of a fuzzy confidence interval by the likelihood ratio method. (7) testing fuzzy hypotheses and/or fuzzy data by fuzzy confidence intervals in the Kwakernaak - Kruse and Meyer sense. (8) a general method to estimate the fuzzy p-value with fuzzy hypotheses and/or fuzzy data. (9) a method of estimation of global and individual evaluations of linguistic questionnaires. (10) numerical estimations of multi-ways analysis of variance models in the fuzzy context. The unbalance in the considered designs are also foreseen.
This is the first package allowing for the estimation, visualization and prediction of the most well-known football models: double Poisson, bivariate Poisson, Skellam, student_t, diagonal-inflated bivariate Poisson, and zero-inflated Skellam. It supports both maximum likelihood estimation (MLE, for static models only) and Bayesian inference. For Bayesian methods, it incorporates several techniques: MCMC sampling with Hamiltonian Monte Carlo, variational inference using either the Pathfinder algorithm or Automatic Differentiation Variational Inference (ADVI), and the Laplace approximation. The package compiles all the CmdStan models once during installation using the instantiate package. The model construction relies on the most well-known football references, such as Dixon and Coles (1997) <doi:10.1111/1467-9876.00065>, Karlis and Ntzoufras (2003) <doi:10.1111/1467-9884.00366> and Egidi, Pauli and Torelli (2018) <doi:10.1177/1471082X18798414>.
Fast estimation algorithms to implement the Quantile Regression with Selection estimator and the multiplicative Bootstrap for inference. This estimator can be used to estimate models that feature sample selection and heterogeneous effects in cross-sectional data. For more details, see Arellano and Bonhomme (2017) <doi:10.3982/ECTA14030> and Pereda-Fernández (2024) <doi:10.48550/arXiv.2402.16693>.
Data-driven fMRI denoising with projection scrubbing (Pham et al (2022) <doi:10.1016/j.neuroimage.2023.119972>). Also includes routines for DVARS (Derivatives VARianceS) (Afyouni and Nichols (2018) <doi:10.1016/j.neuroimage.2017.12.098>), motion scrubbing (Power et al (2012) <doi:10.1016/j.neuroimage.2011.10.018>), aCompCor (anatomical Components Correction) (Muschelli et al (2014) <doi:10.1016/j.neuroimage.2014.03.028>), detrending, and nuisance regression. Projection scrubbing is also applicable to other outlier detection tasks involving high-dimensional data.
Runs multiple individual time series models, and combines them into an ensembles of time series models. This is mainly used to predict the results of the monthly labor market report from the United States Bureau of Labor Statistics for virtually any part of the economy reported by the Bureau of Labor Statistics, but it can be easily modified to work with other types of time series data. For example, the package was used to predict the winning men's and women's time for the 2024 London Marathon.
Flipbooks present code step-by-step and side-by-side with its output. flipbookr helps creators build flipbooks efficiently because code pipelines are automatically parsed and prepped for presentation as flipbooks.
This package creates a HTML widget which displays the results of searching for a pattern in files in a given git repository, including all its branches. The results can also be returned in a dataframe.
Uses three different correlation coefficients to calculate measurement-level adequate correlations in a feature matrix: Pearson product-moment correlation coefficient, Intraclass correlation and Cramer's V.
For ordinal rating data, consider the accelerated EM algorithm to estimate and test models within the family of CUB models (where CUB stands for Combination of a discrete Uniform and a shifted Binomial distributions). The procedure is built upon Louis identity for the observed information matrix. Best-subset variable selection is then implemented since it becomes more feasible from the computational point of view.
This package provides methods to compute simultaneous prediction and confidence bands for dense time series data. The implementation builds on the functional bootstrap approach proposed by Lenhoff et al. (1999) <doi:10.1016/S0966-6362(98)00043-5> and extended by Koska et al. (2023) <doi:10.1016/j.jbiomech.2023.111506> to support both independent and clustered (hierarchical) data. Includes a simple API (see band()) and an Rcpp backend for performance.
This package provides color palettes designed to be reminiscent of text on paper. The color schemes were taken from <https://stephango.com/flexoki>. Includes discrete, continuous, and binned scales that are not necessarily color-blind friendly. Simple scale and theme functions are available for use with ggplot2'.
Modelizations and previsions functions for Functional AutoRegressive processes using nonparametric methods: functional kernel, estimation of the covariance operator in a subspace, ...
Package for time value of money calculation, time series analysis and computational finance.
Generates predictive distributions based on calibrating priors for various commonly used statistical models, including models with predictors. Routines for densities, probabilities, quantiles, random deviates and the parameter posterior are provided. The predictions are generated from the Bayesian prediction integral, with priors chosen to give good reliability (also known as calibration). For homogeneous models, the prior is set to the right Haar prior, giving predictions which are exactly reliable. As a result, in repeated testing, the frequencies of out-of-sample outcomes and the probabilities from the predictions agree. For other models, the prior is chosen to give good reliability. Where possible, the Bayesian prediction integral is solved exactly. Where exact solutions are not possible, the Bayesian prediction integral is solved using the Datta-Mukerjee-Ghosh-Sweeting (DMGS) asymptotic expansion. Optionally, the prediction integral can also be solved using posterior samples generated using Paul Northrop's ratio of uniforms sampling package ('rust'). Results are also generated based on maximum likelihood, for comparison purposes. Various model selection diagnostics and testing routines are included. Based on "Reducing reliability bias in assessments of extreme weather risk using calibrating priors", Jewson, S., Sweeting, T. and Jewson, L. (2024); <doi:10.5194/ascmo-11-1-2025>.
Extend shiny.semantic with extra Fomantic UI components. Create pages in a format similar to shiny', form validation and more.
Convenient functions for ensemble forecasts in R combining approaches from the forecast package. Forecasts generated from auto.arima(), ets(), thetaf(), nnetar(), stlm(), tbats(), snaive() and arfima() can be combined with equal weights, weights based on in-sample errors (introduced by Bates & Granger (1969) <doi:10.1057/jors.1969.103>), or cross-validated weights. Cross validation for time series data with user-supplied models and forecasting functions is also supported to evaluate model accuracy.
Links datasets through fuzzy string matching using pretrained text embeddings. Produces more accurate record linkage when lexical string distance metrics are a poor guide to match quality (e.g., "Patricia" is more lexically similar to "Patrick" than it is to "Trish"). Capable of performing multilingual record linkage. Methods are described in Ornstein (2025) <doi:10.1017/pan.2025.10016>.
This presents a comprehensive set of tools for the analysis and visualization of drug formulation data. It includes functions for statistical analysis, regression modeling, hypothesis testing, and comparative analysis to assess the impact of formulation parameters on drug release and other critical attributes. Additionally, the package offers a variety of data visualization functions, such as scatterplots, histograms, and boxplots, to facilitate the interpretation of formulation data. With its focus on usability and efficiency, this package aims to streamline the drug formulation process and aid researchers in making informed decisions during formulation design and optimization.
Takes a distance matrix and plots it as an interactive graph. One point is focused at the center of the graph, around which all other points are plotted in their exact distances as given in the distance matrix. All other non-focus points are plotted as best as possible in relation to one another. Double click on any point to choose a new focus point, and hover over points to see their ID labels. If color label categories are given, hover over colors in the legend to highlight only those points and click on colors to highlight multiple groups. For more information on the rationale and mathematical background, as well as an interactive introduction, see <https://lea-urpa.github.io/focusedMDS.html>.
Construction, calculation and display of fault trees. Methods derived from Clifton A. Ericson II (2005, ISBN: 9780471739425) <DOI:10.1002/0471739421>, Antoine Rauzy (1993) <DOI:10.1016/0951-8320(93)90060-C>, Tim Bedford and Roger Cooke (2012, ISBN: 9780511813597) <DOI:10.1017/CBO9780511813597>, Nikolaos Limnios, (2007, ISBN: 9780470612484) <DOI: 10.1002/9780470612484>.
This package provides functions for importing, creating, editing and exporting FSK files <https://foodrisklabs.bfr.bund.de/fskx-food-safety-knowledge-exchange-format/> using the R programming environment. Furthermore, it enables users to run simulations contained in the FSK files and visualize the results.
Developed by CDC/ATSDR (Centers for Disease Control and Prevention/ Agency for Toxic Substances and Disease Registry), Social Vulnerability Index (SVI) serves as a tool to assess the resilience of communities by taking into account socioeconomic and demographic factors. Provided with year(s), region(s) and a geographic level of interest, findSVI retrieves required variables from US census data and calculates SVI for communities in the specified area based on CDC/ATSDR SVI documentation. Reference for the calculation methods: Flanagan BE, Gregory EW, Hallisey EJ, Heitgerd JL, Lewis B (2011) <doi:10.2202/1547-7355.1792>.
Miscellaneous utilities, tools and helper functions for finding and searching files on disk, searching for and removing R objects from the workspace. Does not import or depend on any third party package, but on core R only (i.e. it may depend on packages with priority base').
This package provides functions for range estimation in birds based on Pennycuick (2008) and Pennycuick (1975), Flight program which compliments Pennycuick (2008) requires manual entry of birds which can be tedious when there are hundreds of birds to estimate. Implemented are two ODE methods discussed in Pennycuick (1975) and time-marching computation methods as in Pennycuick (1998) and Pennycuick (2008). See Pennycuick (1975, ISBN:978-0-12-249405-5), Pennycuick (1998) <doi:10.1006/jtbi.1997.0572>, and Pennycuick (2008, ISBN:9780080557816).