Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package implements fast, scalable optimization algorithms for fitting generalized principal components analysis (GLM-PCA) models, as described in "A Generalization of Principal Components Analysis to the Exponential Family" Collins M, Dasgupta S, Schapire RE (2002, ISBN:9780262271738), and subsequently "Feature Selection and Dimension Reduction for Single-Cell RNA-Seq Based on a Multinomial Model" Townes FW, Hicks SC, Aryee MJ, Irizarry RA (2019) <doi:10.1186/s13059-019-1861-6>.
Proposes non-parametric estimates of the Fisher information measure and the Shannon entropy power. More theoretical and implementation details can be found in Guignard et al. <doi:10.3389/feart.2020.00255>. A python version of this work is available on github and PyPi ('FiShPy').
The main goal of this package is drawing the membership function of the fuzzy p-value which is defined as a fuzzy set on the unit interval for three following problems: (1) testing crisp hypotheses based on fuzzy data, see Filzmoser and Viertl (2004) <doi:10.1007/s001840300269>, (2) testing fuzzy hypotheses based on crisp data, see Parchami et al. (2010) <doi:10.1007/s00362-008-0133-4>, and (3) testing fuzzy hypotheses based on fuzzy data, see Parchami et al. (2012) <doi:10.1007/s00362-010-0353-2>. In all cases, the fuzziness of data or / and the fuzziness of the boundary of null fuzzy hypothesis transported via the p-value function and causes to produce the fuzzy p-value. If the p-value is fuzzy, it is more appropriate to consider a fuzzy significance level for the problem. Therefore, the comparison of the fuzzy p-value and the fuzzy significance level is evaluated by a fuzzy ranking method in this package.
Calculate useful quantities for a user-defined differential equation model of infectious disease transmission among individuals in a healthcare facility. Input rates of transition between states of individuals with and without the disease-causing organism, distributions of states at facility admission, relative infectivity of transmissible states, and the facility length of stay distribution. Calculate the model equilibrium and the basic facility reproduction number, as described in Toth et al. (2025) <doi:10.1371/journal.pcbi.1013577>.
This package provides a flexible permutation framework for making inference such as point estimation, confidence intervals or hypothesis testing, on any kind of data, be it univariate, multivariate, or more complex such as network-valued data, topological data, functional data or density-valued data.
Fatty acid metabolic analysis aimed to the estimation of FA import (I), de novo synthesis (S), fractional contribution of the 13C-tracers (D0, D1, D2), elongation (E) and desaturation (Des) based on mass isotopologue data.
Compute labels for a test set according to the k-Nearest Neighbors classification. This is a fast way to do k-Nearest Neighbors classification because the distance matrix -between the features of the observations- is an input to the function rather than being calculated in the function itself every time.
Enhance R help system by fuzzy search and preview interface, pseudo-postfix operators, and more. The `?.` pseudo-postfix operator and the `?` prefix operator displays documents and contents (source or structure) of objects simultaneously to help understanding the objects. The `?p` pseudo-postfix operator displays package documents, and is shorter than help(package = foo).
R shiny app to perform data analysis and visualization for the Fully Automated Senescence Test (FAST) workflow.
This package provides a typical gait analysis requires the examination of the motion of nine joint angles on the left-hand side and six joint angles on the right-hand side across multiple subjects. Due to the quantity and complexity of the data, it is useful to calculate the amount by which a subjectâ s gait deviates from an average normal profile and to represent this deviation as a single number. Such a measure can quantify the overall severity of a condition affecting walking, monitor progress, or evaluate the outcome of an intervention prescribed to improve the gait pattern. This R package provides tools for computing the Functional Gait Deviation Index, a novel index for quantifying gait pathology using multivariate functional principal component analysis. The package supports analysis at the level of both legs combined, individual legs, and individual joints/planes. It includes functions for functional data preprocessing, multivariate functional principal component decomposition, FGDI computation, and visualisation of gait abnormality scores. Further details can be found in Minhas, S. K., Sangeux, M., Polak, J., & Carey, M. (2025). The Functional Gait Deviation Index. Journal of Applied Statistics <doi:10.1080/02664763.2025.2514150>.
Discretely-sampled function is first smoothed. Features of the smoothed function are then extracted. Some of the key features include mean value, first and second derivatives, critical points (i.e. local maxima and minima), curvature of cunction at critical points, wiggliness of the function, noise in data, and outliers in data.
Simulates plot data in multi-environment field trials with one or more traits. Its core function generates plot errors that capture spatial trend, random error (noise), and extraneous variation, which are combined at a user-defined ratio. Phenotypes can be generated by combining the plot errors with simulated genetic values that capture genotype-by-environment (GxE) interaction using wrapper functions for the R package `AlphaSimR`.
This package provides utilities to facilitate handling of Fude Polygon data downloadable from the Ministry of Agriculture, Forestry and Fisheries website <https://open.fude.maff.go.jp>.
Used for the design and analysis of a 2x2 factorial trial for a time-to-event endpoint. It performs power calculations and significance testing as well as providing estimates of the relevant hazard ratios and the corresponding 95% confidence intervals. Important reference papers include Slud EV. (1994) <https://www.ncbi.nlm.nih.gov/pubmed/8086609> Lin DY, Gong J, Gallo P, Bunn PH, Couper D. (2016) <DOI:10.1111/biom.12507> Leifer ES, Troendle JF, Kolecki A, Follmann DA. (2020) <https://github.com/EricSLeifer/factorial2x2/blob/master/Leifer%20et%20al.%20paper.pdf>.
Finds CRAN packages by the topic requested. The topic can be given as a character string or as a regular expression and will help users to locate CRAN packages matching their specified requirement. findPackage(<string>) returns a data frame of packages with description containing the input string.
This package performs dose assignment and trial simulation for the FBCRM (Fully Bayesian Continual Reassessment Method) and MFBCRM (Mixture Fully Bayesian Continual Reassessment Method) phase I clinical trial designs. These trial designs extend the Continual Reassessment Method (CRM) and Bayesian Model Averaging Continual Reassessment Method (BMA-CRM) by allowing the prior toxicity skeleton itself to be random, with posterior distributions obtained from Markov Chain Monte Carlo. On average, the FBCRM and MFBCRM methods outperformed the CRM and BMA-CRM methods in terms of selecting an optimal dose level across thousands of randomly generated simulation scenarios. Details on the methods and results of this simulation study are available on request, and the manuscript is currently under review.
Parses financial condition and performance data (Call Reports) for institutions in the United States Farm Credit System. Contains functions for downloading files from the Farm Credit Administration (FCA) Call Report archive website and reading the files into tidy data frame format. The archive website can be found at <https://www.fca.gov/bank-oversight/call-report-data-for-download>.
Robust analysis using forward search in linear and generalized linear regression models, as described in Atkinson, A.C. and Riani, M. (2000), Robust Diagnostic Regression Analysis, First Edition. New York: Springer.
This package implements the formulae required to calculate freedom from disease according to Cameron and Baldock (1998) <doi:10.1016/S0167-5877(97)00081-0>. These are the methods used at the Swedish national veterinary institute (SVA) to evaluate the performance of our nation animal disease surveillance programmes.
Nonparametric estimators and tests for time series analysis. The functions use bootstrap techniques and robust nonparametric difference-based estimators to test for the presence of possibly non-monotonic trends and for synchronicity of trends in multiple time series.
This package provides a plugin for fiery that supports various forms of authorization and authentication schemes. Schemes can be required in various combinations or by themselves and can be combined with scopes to provide fine-grained access control to the server.
This package provides a Bayesian Nonparametric model for the study of time-evolving frequencies, which has become renowned in the study of population genetics. The model consists of a Hidden Markov Model (HMM) in which the latent signal is a distribution-valued stochastic process that takes the form of a finite mixture of Dirichlet Processes, indexed by vectors that count how many times each value is observed in the population. The package implements methodologies presented in Ascolani, Lijoi and Ruggiero (2021) <doi:10.1214/20-BA1206> and Ascolani, Lijoi and Ruggiero (2023) <doi:10.3150/22-BEJ1504> that make it possible to study the process at the time of data collection or to predict its evolution in future or in the past.
On import, the XML information is converted to a dataframe that reflects the hierarchical XML structure. Intuitive functions allow to navigate within this transparent XML data structure (without any knowledge of XPath'). flatXML also provides tools to extract data from the XML into a flat dataframe that can be used to perform statistical operations. It also supports converting dataframes to XML.
This package provides functions that support stable prediction and classification with radiomics data through factor-analytic modeling. For details, see Peeters et al. (2019) <doi:10.48550/arXiv.1903.11696>.