Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides a comprehensive Shiny-based graphical user interface for conducting a wide range of factor analysis procedures. FAfA (Factor Analysis for All) guides users through data uploading, assumption checking (descriptives, collinearity, multivariate normality, outliers), data wrangling (variable exclusion, data splitting), factor retention analysis (e.g., Parallel Analysis, Hull method, EGA), Exploratory Factor Analysis (EFA) with various rotation and extraction methods, Confirmatory Factor Analysis (CFA) for model testing, Reliability Analysis (e.g., Cronbach's Alpha, McDonald's Omega), Measurement Invariance testing across groups, and item weighting techniques. The application leverages established R packages such as lavaan and psych to perform these analyses, offering an accessible platform for researchers and students. Results are presented in user-friendly tables and plots, with options for downloading outputs.
Perform variable selection in settings with possibly missing data based on extrinsic (algorithm-specific) and intrinsic (population-level) variable importance. Uses a Super Learner ensemble to estimate the underlying prediction functions that give rise to estimates of variable importance. For more information about the methods, please see Williamson and Huang (2024) <doi:10.1515/ijb-2023-0059>.
Converts vectors of numbers into character vectors of numerals, including cardinals (one, two, three) and ordinals (first, second, third). Supports negative numbers, fractions, and arbitrary-precision integer and high-precision floating-point vectors provided by the bignum package.
This package provides three methods to generate fully-sequential space-filling designs inside a unit hypercube. A fully-sequential space-filling design means a sequence of nested designs (as the design size varies from one point up to some maximum number of points) with the design points added one at a time and such that the design at each size has good space-filling properties. Two methods target the minimum pairwise distance criterion and generate maximin designs, among which one method is more efficient when design size is large. One method targets the maximum hole size criterion and uses a heuristic to generate what is closer to a minimax design.
For cleaning and analysis of graphs, such as animal closing force measurements. forceR was initially written and optimized to deal with insect bite force measurements, but can be used for any time series. Includes a full workflow to load, plot and crop data, correct amplifier and baseline drifts, identify individual peak shapes (bites), rescale (normalize) peak curves, and find best polynomial fits to describe and analyze force curve shapes.
Scrapes data from Fitbit <http://www.fitbit.com>. This does not use the official API, but instead uses the API that the web dashboard uses to generate the graphs displayed on the dashboard after login at <http://www.fitbit.com>.
This package provides an efficient C++ code for computing an optimal segmentation model with Poisson loss, up-down constraints, and label constraints, as described by Kaufman et al. (2024) <doi:10.1080/10618600.2023.2293216>.
This package provides a collection of functions which fit functional neural network models. In other words, this package will allow users to build deep learning models that have either functional or scalar responses paired with functional and scalar covariates. We implement the theoretical discussion found in Thind, Multani and Cao (2020) <arXiv:2006.09590> through the help of a main fitting and prediction function as well as a number of helper functions to assist with cross-validation, tuning, and the display of estimated functional weights.
Create descriptive file names with ease. New file names are automatically (but optionally) time stamped and placed in date stamped directories. Streamline your analysis pipeline with input and output file names that have informative tags and proper file extensions.
This package provides a fold change rank based method is presented to search for genes with changing expression and to detect recurrent chromosomal copy number aberrations. This method may be useful for high-throughput biological data (micro-array, sequencing, ...). Probabilities are associated with genes or probes in the data set and there is no problem of multiple tests when using this method. For array-based comparative genomic hybridization data, segmentation results are obtained by merging the significant probes detected.
Dataset of 302 measurements of 11 fish species to accompany the manuscript "Length-weight relationships of six freshwater fish species from lake Kirkkojarvi, Finland".
Allows to estimate dynamic model averaging, dynamic model selection and median probability model. The original methods are implemented, as well as, selected further modifications of these methods. In particular the user might choose between recursive moment estimation and exponentially moving average for variance updating. Inclusion probabilities might be modified in a way using Google Trends'. The code is written in a way which minimises the computational burden (which is quite an obstacle for dynamic model averaging if many variables are used). For example, this package allows for parallel computations and Occam's window approach. The package is designed in a way that is hoped to be especially useful in economics and finance. Main reference: Raftery, A.E., Karny, M., Ettler, P. (2010) <doi:10.1198/TECH.2009.08104>.
Finds the critical sample size ("critical point of stability") for a correlation to stabilize in Schoenbrodt and Perugini's definition of sequential stability (see <doi:10.1016/j.jrp.2013.05.009>).
This package provides a suite of bootstrap-based models and tools for analyzing fish stocks and aquatic populations. Designed for ecologists and fisheries scientists, it supports data from length-frequency distributions, tag-and-recapture studies, and hard structure readings (e.g., otoliths). See Schwamborn et al., 2019 <doi:10.1016/j.ecolmodel.2018.12.001> for background. The package includes functions for bootstrapped fitting of growth curves and plotting.
It provides classifiers which can be used for discrete variables and for continuous variables based on the Naive Bayes and Fuzzy Naive Bayes hypothesis. Those methods were developed by researchers belong to the Laboratory of Technologies for Virtual Teaching and Statistics (LabTEVE) and Laboratory of Applied Statistics to Image Processing and Geoprocessing (LEAPIG) at Federal University of Paraiba, Brazil'. They considered some statistical distributions and their papers were published in the scientific literature, as for instance, the Gaussian classifier using fuzzy parameters, proposed by Moraes, Ferreira and Machado (2021) <doi:10.1007/s40815-020-00936-4>.
This package provides fast moving-window ("focal") and buffer-based extraction for raster data using the terra package. Automatically selects between a C++ backend (via terra') and a Fast Fourier Transform (FFT) backend depending on problem size. The FFT backend supports sum and mean, while other statistics (e.g., median, min, max, standard deviation) are handled by the terra backend. Supports multiple kernel types (e.g., circle, rectangle, gaussian), with NA handling consistent with terra via na.rm and na.policy'. Operates on SpatRaster objects and returns results with the same geometry.
Functions, S4 classes/methods and a graphical user interface (GUI) to design surveys to substantiate freedom from disease using a modified hypergeometric function (see Cameron and Baldock, 1997, <doi:10.1016/s0167-5877(97)00081-0>). Herd sensitivities are computed according to sampling strategies "individual sampling" or "limited sampling" (see M. Ziller, T. Selhorst, J. Teuffert, M. Kramer and H. Schlueter, 2002, <doi:10.1016/S0167-5877(01)00245-8>). Methods to compute the a-posteriori alpha-error are implemented. Risk-based targeted sampling is supported.
This package provides a lightweight suite of functions for retrieving information about 5-digit or 2-digit US FIPS codes.
This package provides a collection of functions for testing various aspects of univariate time series including independence and neglected nonlinearities. Further provides functions to investigate the chaotic behavior of time series processes and to simulate different types of chaotic time series maps.
This package provides a collection of functions to manage, to investigate and to analyze data sets of financial assets from different points of view.
For functions that take and return vectors (or scalars), this package provides 8 algorithms for finding fixed point vectors (vectors for which the inputs and outputs to the function are the same vector). These algorithms include Anderson (1965) acceleration <doi:10.1145/321296.321305>, epsilon extrapolation methods (Wynn 1962 <doi:10.2307/2004051>) and minimal polynomial methods (Cabay and Jackson 1976 <doi:10.1137/0713060>).
Access small example datasets from Luquillo, a ForestGEO site in Puerto Rico (<https://forestgeo.si.edu/sites/north-america/luquillo>).
Work with configs with a source precedence. Either create own R6 instance or work with convenient functions at a package level.
Interface to Palantir Foundry', including reading and writing structured or unstructured datasets, and more <https://www.palantir.com/platforms/foundry/>.